Feeds:
Posts
Comments

Archive for the ‘Host plant resistance’ Category

SCI

DEV

NET

 

 

Opinión:

12/07/14

Forjar alianzas de investigación pensando en agricultores

Alianzas reales son clave para unir innovación de vanguardia con usos posteriores dice Jean-Marcel Ribaut del CGIAR.

 

         Investigación de laboratorio: desconectada de estudios aplicados en otras fases de cadena de I+D

  • Programa del CGIAR los vincula para crear nuevos cultivos para agricultores de escasos recursos

  • Se basa en promoción de enlaces eficaces en vez de alianzas usadas como ‘coartadas’

16

 

0

 

0

Google +

0

 

Alianzas reales son clave para unir innovación de vanguardia con usos posteriores dice Jean-Marcel Ribaut del CGIAR.
 
La investigación agrícola para el desarrollo abarca una amplia gama de actividades: desde la investigación de ‘vanguardia’, generalmente realizada en universidades o institutos avanzados de investigación, hasta la investigación mucho más ‘secundaria’ de los fitomejoradores que logran mejores cultivos en los campos de agricultores.
 
Como resultado de este amplio contexto, las actividades pueden fragmentarse y tener escasa comunicación entre los equipos especializados a lo largo de la cadena de investigación y desarrollo (I+D). Esto a menudo resulta contraproducente, especialmente cuando los investigadores van más allá de su área de especialización.
 
Además, las cada vez más amplias y diversas carteras de investigación con frecuencia ponen en peligro la eficiencia y crean una competencia desleal para la financiación. Y, en consecuencia, los proyectos de investigación nunca se convierten en productos que mejoren la productividad agrícola.
 
Las alianzas verdaderas y eficaces —que conectan a la gente adecuada de los equipos complementarios— son un camino obvio para mejorar la efectividad de la I+D.
 
Vincular la innovación con la aplicación
 
Vincular las innovaciones de la investigación de avanzada con las aplicaciones posteriores de esa investigación —frecuentemente conocida como ciencia de transferencia o biología de transferencia— no es un reto nuevo. Al menos en el campo del mejoramiento de cultivos, es más fácil decirlo que hacerlo.
 
Es importante encontrar las personas y los equipos adecuados, y tener financiamiento y recursos humanos suficientes para manejar eficazmente las alianzas, procurando que todos se muevan en la misma dirección y maximizando las sinergias entre los equipos al tiempo que se mantiene la atención en la calidad de la información y el intercambio de información. 
 
Los Programas de Desafío del CGIAR constituyen un modelo de cómo pueden trabajar eficientemente estas alianzas. Uno de ellos es el Programa Generación, que yo dirijo: un consorcio global de instituciones de investigación de cultivos que, en una década, se propuso demostrar que aplicando biología moderna y aprovechando la diversidad genética de las plantas es posible crear variedades de cultivos que satisfagan las necesidades de los agricultores de escasos recursos.

Un reto esencial de una alianza verdadera es lograr el equilibrio adecuado entre la gestión que sirve al programa en su totalidad y crear compromiso de modo que todos los socios se puedan alimentar del espíritu de red”.

Jean-Marcel Ribaut, CGIAR

 
Para apoyar las iniciativas de colaboración de los equipos de investigación independientes, en los primeros cinco años (2004-2008)  del programa hubo varias convocatorias para subvenciones. Esto creó una sana competencia a medida que los ganadores eran seleccionados basándose en criterios bien definidos. Un criterio clave fue el de la ‘alianza integradora’: cada proyecto necesitaba tener por lo menos un socio de un instituto de investigación de avanzada, un centro perteneciente al CGIAR y una institución de investigación y/o educación de un país en desarrollo.
 
A través de un proceso competitivo, el programa también fomentaba la participación activa de socios de países en desarrollo, que facilitaran la adopción sostenible de nuestros productos, descalificando a lo que denominamos alianzas usadas como ‘coartada’, vale decir aquellas donde la participación de los países en desarrollo queda reducida a una actividad y un presupuesto limitados. Cada proyecto también tenía que incluir un componente de creación de capacidades.
 
Reorientar las agendas de investigación
 
A la mitad del programa, se reorientó su agenda de investigación para reducir el número de cultivos y países objetivo basándose en criterios como el material genético y genómico potencialmente valioso y disponible de un determinado cultivo y evitando la duplicidad con otras iniciativas.
 
La segunda fase (2009-2014) esencialmente encargó proyectos para construir resultados prometedores derivados de la primera fase, traduciéndolos en productos tangibles para nuestros usuarios primarios, que principalmente son mejoradores de plantas de los países en desarrollo. Esto se logró con un cambio progresivo en el presupuesto y en el liderazgo de los institutos de investigación avanzada y del CGIAR a través de subvenciones directas a los institutos locales de mejoramiento.
 
Una iniciativa sobre el sorgo en el que participan científicos de tres regiones (América del Norte y del Sur y África) es un ejemplo de dicho cambio.
 
En primer lugar, los investigadores dirigidos por un científico de alto rango del Departamento de Agricultura de los Estados Unidos con sede en la Universidad de Cornell, en colaboración con un científico visitante de la corporación de investigación EMBRAPA de Brasil, clonó un gen que confirió tolerancia al sorgo ante la toxicidad del aluminio. Mediante otro proyecto competitivo dirigido por Brasil (en su primera fase), los investigadores examinaron posteriormente un conjunto diverso de material genético de diferentes familias de plantas para identificar las más favorables para el desempeño del sorgo en suelos ácidos con aluminio tóxico.
 
En un tercer paso, a partir de la construcción de una alianza exitosa y de los productos generados a través de dos subvenciones competitivas, el programa encargó una segunda fase del proyecto colaborativo entre mejoradores africanos y los científicos brasileros que dirigieron el segundo proyecto competitivo. El objetivo fue transferir los genes favorables brasileños en las variedades africanas de sorgo de Kenia y Níger.
 
De esta manera, este proyecto con múltiples socios de distintos países a lo largo de una década, que comenzó con un experimento de laboratorio en los Estados Unidos, se espera que conduzca a productos para los agricultores africanos en los próximos dos o tres años, con una parada en el intermedio en Sudamérica.
 
El espíritu de la alianza
 
Esta es, por supuesto, una de nuestras mejores historias que facilitan la colaboración exitosa a lo largo de la cadena de I+D. Naturalmente, también hubo algunos fracasos, especialmente cuando nos pusimos demasiado legalistas en la nominación de socios que teóricamente pensábamos eran muy adecuados para una actividad determinada. También tuvimos proyectos que generaron productos que resultaron inapropiados para ser transferidos a la cadena de suministro.
 
Aprendimos que la ‘química’ entre los socios —el hecho de que se aprecien entre sí, construida progresivamente en base a colaboraciones anteriores— es probablemente tan importante, si no es más importante, que las habilidades complementarias que lucen prometedoras en el papel.
 
Así que, en general, la joya de la corona de nuestros logros es en realidad un espíritu intangible y una cultura basada en la confianza mutua, el respeto y un auténtico deseo de complementar el trabajo —y aprovechar las habilidades—de los otros socios. Así lo afirmó una reciente revisión externa, que calificó muy alto el enfoque de alianzas del programa. [1]
 
No hay una receta mágica para fomentar este espíritu. La construcción de proyectos prometedores como parte de un trabajo enfocado y encomendado es un ingrediente clave, como lo es el constante deseo de ayudar y, cuando sea posible, pasar el liderazgo al siguiente actor de la cadena de suministro.
 
Debo añadir una advertencia necesaria: este modelo puede trabajar solo si se construye con instituciones sólidas y bien establecidas, y como un complemento a las actividades básicas.
 
Otro elemento clave del éxito es identificar aquellos objetivos específicos de la investigación que se puedan alcanzar en un determinado margen de tiempo. Nuestra experiencia también sugiere que los beneficios de tener un equipo de gestión independiente supera el costo que ello conlleva.
 
Un reto fundamental de una alianza verdadera es lograr el equilibrio adecuado entre la gestión que sirve al programa en su totalidad y crear compromiso de manera que todos los socios se puedan alimentar de un espíritu de red.
 
Jean-Marcel Ribaut es director del Programa de Desafío Generación del CGIAR, una red de alianzas de fitomejoradores alojada en la sede del CIMMYT en México. Se le puede escribir a: j.ribaut@cgiar.org
 
La versión original de este artículo se publicó en la edición global de SciDev.Net

Referencias

[1] Paramjit S. Sachdeva and others Report of the final external review of the Generation Challenge Programme (CGIAR, April 2014)

Read Full Post »

Logo for IPM CRSP

Annual Report 2013
Posted on May 27, 2014 by Kelly Izlar
The IPM Innovation Labs’s FY 2013 (October 1, 2012–September 30, 2013) annual report is now available. Click below to download the document.

http://www.oired.vt.edu/ipmcrsp/publications/annual-reports/annual-report-2013/

For users with lower bandwidth and/or with interest in only certain specific topic areas, we will split individual chapters and major sections out of the Annual Report for you to view individually. Check back in the coming weeks for a list of individual chapters and sections for download. For more information contact: rmuni@vt.edu

Table of Contents

Management Entity Message
Highlights and Achievements in 2012–2013

Regional Programs
Latin America and the Caribbean
East Africa
West Africa
South Asia
Southeast Asia
Central Asia

Global Programs
Parthenium
International Plant Diagnostic Network (IPDN)
International Plant Virus Disease Network (IPVDN)
Impact Assessment
Gender Equity, Knowledge, and Capacity Building

Associate & Buy-In Awards
Indonesia
Nepal
Bangladesh

Training and Publications
Short- and Long-Term Training
Publications

Appendices: Collaborating Institutions and Acronyms

Read Full Post »

Image

http://www.scidev.net/global/farming/multimedia/reviving-nepal-with-hybrid-tomatoes.html

See YouTube movie on hybrid tomato production:

http://www.youtube.com/watch?feature=player_embedded&v=H9swuUJnu6o

Image

Five years ago, diseases and storms during the monsoon season would wipe out the majority of Nepali tomato plantations. Discouraged, Nepali farmers slowly started abandoning tomato production. But the tomato is a big part of local cuisine, so Nepal had to import it from India.

Horticulturist Kedar Budhathoki, based in the Lalitpur district, understood Nepali farmers’ problems. He was already leading a team of scientists working to develop a tomato variety that was resistant to the disease wilt. A few years — and many experiments — later, a local hybrid variety, Shrijana, was born.

Demand grew as the fruit remained popular. And Nepali farmers knew they had found a way to flip the export-import equation. Today, 90 per cent of tomatoes in Nepal are Shrijana and Nepal not only produces all its own tomatoes, but it exports them to several neighbouring states in India.

 Image

 

Read Full Post »

Image

http://www.scidev.net/global/farming/multimedia/cultural-change-in-kenyan-banana-farming.html

See YouTube movie:

http://www.youtube.com/watch?feature=player_embedded&v=JHoKNmWCCyE

Farmers in Nkubu, Meru County, central Kenya, are experimenting with a new banana production method with the help of the Jomo Kenyatta University of Agriculture and Technology and the Kaguri Agricultural Training Centre The introduction of laboratory grown tissue culture banana seedlings has significantly boosted the local economy.

Such tissue cultures allow farmers to grow more robust plants that are less prone to common diseases such as anthracnose.

Traditionally, women grow and sell bananas. With tissue culture bananas, they are increasing their revenues and improving the living standards of their families.

Image

Read Full Post »

http://www.newswise.com/articles/view/616975/?sc=sptn

Released: 4/24/2014 11:30 AM EDT
Source Newsroom: Cornell University
more news from this source

Newswise — ITHACA, N.Y. – Cornell University plant breeders have released a new alfalfa variety with some resistance against the alfalfa snout beetle, which has ravaged alfalfa fields in nine northern New York counties and across the St. Lawrence River in Canada.
There are no other known alfalfa snout beetle infestations in North America, but the pesky beetle has been spreading. The snout beetle’s larvae feed on and damage the alfalfa plant’s roots, limiting yields for this major livestock feed.
“We are the only ones who can work on [this pest], because it is so regional,” said Don Viands, professor of plant breeding and genetics and director of the Forage Breeding Project.
The new resistant cultivar, called Seedway 9558 SBR, has been in development since 2003, along with six other populations. But Seedway 9558 SBR has provided the most resistance while also maintaining the highest yields.
On a scale of one to five, where one represents little to no root-feeding damage and five is severe root-feeding damage, Seedway 9558 SBR scored a 2.9.
“This initial variety is better than anything else, but we feel we can still do better,” Viands said. “We are trying to get a variety that is at least twice as good as this one.”
For effective control, the resistant alfalfa should be planted with a larvae-killing nematode that has been studied and released by Elson Shields, professor of entomology, said Viands.
“We are making significant progress in developing resistance, but it has been very slow,” Viands said. The first-year base crop for Seedway 9558 SBR was 13 percent resistant, compared with 38 percent after seven cycles. “Normally it takes four to five cycles to develop resistance, but this [alfalfa snout beetle resistance] may have multiple genes, so it is taking time,” Viands added, noting that it is still unknown exactly what mechanism allows the plant to deter the beetles.
Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews. For additional information, see this Cornell Chronicle story.

Read Full Post »

Image

The scientists who have made significant contributions to Hessian fly resistance work in Morocco and have been recognized at the IPRI 2014 in Marrakech are:

 

From the National Institute of Agronomic Research (INRA):

Dr. Nsarellah Nasserlhaq, Dr. Jlibene Mohamed, Dr. Lhaloui Saadia, Dr. El Hadoury Jamal, Mr. Amamou Ali, Mr. El Haila Mohamed

From the International Center for Agricultural Research in the Dry Areas (ICARDA):

Dr. Amri Ahmed, Dr. Nachit Miloudi, Dr. Abdalla Osman, Dr. El Bouhssini Mustapha.

From the Mid America International Agricultural Consortium (MIAC)/USAID project:

Dr. Jimmy Hatchet (USDA-ARS, Manhattan, KS).

For more information about the 21st IPRI workshop in Marrakech, please contact:

Mustapha El Bouhssini
Senior entomologist
ICARDA Rabat Office
P.O. Box: 6299
Rabat Instituts
Rabat, Morocco
Tel: (212)537681659
E-mail : M.Bohssini@cgiar.org

 

Read Full Post »

Image

Released: 4/1/2014 8:00 AM EDT
Source Newsroom: Michigan Technological University

http://www.newswise.com/articles/view/615881/?sc=swtn

Newswise — As the Earth’s human population marches toward 9 billion, the need for hardy new varieties of grain crops has never been greater.

It won’t be enough to yield record harvests under perfect conditions. In an era of climate change, pollution and the global spread of pathogens, these new grains must also be able to handle stress. Now, researchers at Michigan Technological University have identified a set of genes that could be key to the development of the next generation of super rice.

A meta-data analysis by biologist Ramakrishna Wusirika and PhD student Rafi Shaik has uncovered more than 1,000 genes in rice that appear to play key roles in managing its response to two different kinds of stress: biotic, generally caused by infectious organisms like bacteria; and abiotic, caused by environmental agents, like nutrient deficiency, flood and salinity.

Traditionally, scientists have believed that different sets of genes regulated plants’ responses to biotic and abiotic stress. However, Wusirika and Shaik discovered that 1,377 of the approximately 3,800 genes involved in rice’s stress response played a role in both types stress. “These are the genes we think are involved in the cross talk between biotic and abiotic stesses,” said Wusirika.

About 70 percent of those “master” genes are co-expressive—they turn on under both kinds of stress. Typically, the others turn on for biotic stress and turn off for abiotic stress.

The scientists looked at the genes’ response to five abiotic stresses—drought, heavy metal contamination, salt, cold and nutrient deprivation—and five biotic stresses—bacteria, fungus, insect predation, weed competition and nematodes. A total of 196 genes showed a wide range of expressions to these stresses.

“The top genes are likely candidates for developing a rice variety with broad stress-range tolerance,” Wusirika said.

Next, they would like to test their findings. “We want to do experimental analysis to see if five or 10 of the genes work as predicted,” he said.

Their study is described in the paper, “Machine Learning Approaches Distinguish Multiple Stress Conditions using Stress-Resposive Genes and Identify Candidate Genes for Broad Resistance in Rice,” published in the January edition of Plant Physiology.

Read Full Post »

Reported by pestnet@yahoogroups.com by Grahame Jackson <gjackson@zip.com.au>

March 5th, 2014 in Biology / Ecology

This is a root of a banana plant infected by the nematode Radopholus similis. The roundworms infect the roots and kill root tissue.

Image

 

Credit: Rony Swennen and Dirk De Waele

The banana variety Yangambi km5 produces toxic substances that kill the nematode Radopholus similis, a roundworm that infects the root tissue of banana plants – to the frustration of farmers worldwide. The finding bodes well for the Grande Naine, the export banana par excellence, which is very susceptible to the roundworms.
The parasitic nematode Radopholus similis is the invisible nemesis of the banana plant, says Professor Dirk De Waele (Laboratory for Tropical Crop Improvement, KU Leuven), a co-author of the study: “This roundworm infects banana crops worldwide. The nematodes are invisible to the naked eye, but they can penetrate the roots of banana plants by the thousands. Once infected, these plants absorb less water and nutrients, resulting in yield losses of up to 75 percent. Lesions in the roots also make the plant more susceptible to other diseases. Eventually, the roots begin to rot. In the final stage of the disease, the plant topples over, its fruit bunch inexorably lost.”
Combating nematodes isn’t easy, adds Professor Rony Swennen (Laboratory for Tropical Crop Improvement, KU Leuven), another co-author: “Synthetic pesticides are toxic and expensive. Moreover, pesticides usually do not actually kill the nematodes, they just temporarily paralyze them. Nematodes can also build up resistance to pesticides.”

This is a banana field in Uganda planted with Grande Naine, a banana variety commonly sold in the supermarket. The nematode Radopholus similis infects the roots of banana plants. In the final stage of disease, the plant topples over and its fruit bunch is lost.

Imagec

Credit: Rony Swennen and Dirk De Waele

While the Grande Naine is very susceptible to nematodes, other varieties are known to be resistant to them. Enter the Yangambi km5, a variety first grown in the 1950′s at a Belgian research station in Yangambi, DR Congo. The researchers compared the two banana varieties and studied their defense responses to Radopholus similis. “Researchers have always wondered how the Yangambi km5 manages to fight off roundworms,” says De Waele. “This study goes a long way in answering that.”
With colleagues at the Max Planck Institute for Chemical Ecology (Germany), the KU Leuven researchers identified which metabolites are responsible for fighting off the nematodes. “We found nine different nematode-killing metabolites in Yangambi km5. These metabolites are also produced in the Grande Naine, but much more slowly and in lesser quantities. In that banana variety, the nematodes win the fight.”
The new knowledge of metabolites will be helpful in developing edible and pest-resistant banana varieties, says Swennen. “The next step is to screen other banana varieties for metabolites. This method could also be applied to other crops and other species of nematode. Nematodes pose a growing threat to rice production in Asia, for example. Our findings also provide the industry with perspectives to develop a generation of new pesticides against nematodes.”
The researchers’ findings were published in a recent issue of the journal PNAS.
More information: PNAS DOI: 10.1073/pnas.1314168110
Provided by KU Leuven

 

Read Full Post »

SciDev

[LAGOS] Nigerian farmers who tested new maize crops resistant to the widespread Striga plant parasite are so enthusiastic about their increased crop yields that they are selling more seeds than the official distribution channels.

The crops were developed in the Nigerian laboratories of the International Institute for Agricultural Research (IITA). They dramatically cut maize losses from the root-infecting Striga, or witchweed, during two years of trial cultivation by farmers in Borno State in northern Nigeria.

Nigeria’s Institute for Agricultural Research began distributing the new parasite-resistant maize seeds in December 2008.

Abebe Menkir, the lead scientist on the research project at IITA, told SciDev.Net that some farmers in Borno state were already producing large quantities of resistant seeds and selling them on to farmers in and outside the region. He was unable to say how many seeds are being — and will be — distributed through official channels.

“The farmers say they couldn’t wait for the official release of seedlings because the variety is successful, cutting losses,” says Menkir.

Menkir said the next step was to distribute the parasite-resistant maize in other countries in West and Central Africa.

The varieties, known as Sammaz 15 and 16 contain genes that diminish the growth of parasitic flowering plants such as Striga, which attaches to the maize root. Both Sammaz varieties tolerate heavy Striga infestations without suffering crop losses.

“A normal maize variety without resistance to Striga can sustain from 60 per cent to 100 per cent grain yield loss in farmers’ fields that are severely infested,” Menkir told SciDev.Net. Sammaz 16 loses just ten per cent of yield in an extreme invasion.

Sammaz 16 is a late-maturing variety requiring 110 to 120 days of growth, whereas Sammaz 15 can often be harvested at 100 days and is more suitable for regions with short growing periods or unpredictable water supplies.

Agronomy researcher Michael Aken’Ova from the faculty of agriculture at the University of Ibadan, said that producing resistant and tolerant cultivars such as Sammaz is the most economically feasible, easily accessible, safe and sustainable approach to combat losses due to Striga, particularly compared to labour-intensive methods such as weeding.

He added that he is sure that the resistant crops will soon make it to the farmers who need them, with the aid of leaflets, radio magazine programmes and messages in local languages.

Read Full Post »

Flickr/Sustainable Sanitation Alliance

Speed read

 

 

  • GM eggplant can cut the use of pesticides and save farmers money
  • Farmers said they would switch to growing GM eggplant, once they learnt this
  • Critics say biotech firms are using farmers to coax a shift to GMO foods

[MANILA] A study contends that 96 per cent of Filipino farmers are willing to shift to a genetically modified eggplant and are willing to pay double the seed price if it means a substantial cut in spending on pesticide. 

The study, featured in a book launched last month (6 February) by the International Service for the Acquisition of Agri-Biotech Applications and the Southeast Asian Regional Centre for Graduate Study and Research in Agriculture, refers to the GM eggplant which have been genetically modified to resist infestations of the fruit and shoot borer. The said moth species is considered the most damaging pest attacking eggplants in South-East and South Asia. Its larvae feed inside the eggplant, making the fruit unmarketable and unfit for human consumption. At times, yield loss could be total.

The majority of eggplant farmers, the study says, had no prior knowledge of GM eggplant yet expressed an interest in adopting it when informed of its resistance to fruit and shoot borers.

But while proponents consider the GM eggplant ideal for pest management and say it is non-toxic to humans, opponents of genetically modified organisms (GMO) say otherwise.

Lorena Villareal, executive director of the NGO Alay Bayan-Luzon Inc., which is involved in advocacy work and community mobilisation programs, says studies are being used to encourage farmers to the shift to GM foods, while downplaying suspected long-term impact of GMOs on health and contamination of the environment.

“We would like to have consciousness-raising awareness for farmers to explain the difference between producing for income and producing for consumption,” says Villareal, adding that while it is natural that farmers would like to earn big, they also have a social responsibility.

But Saturnina Halos, chairwoman of the Department of Agriculture’s biotechnology advisory team, says farmers are willing to adopt the GM eggplant even at a higher price as they understand this could result in significant savings on pesticides and see the potential for developing the market for the variety.

Field testing of GM eggplant has ceased in the Philippines following a court order in May 2013 upholding a petition filed by Greenpeace and other groups. The court ordered a stop to field trials of GM eggplant “in the absence of full scientific certainty that they are safe to humans and the environment”.

It used evidence from a paper published by a team led by French scientist and molecular biology professor Gilles-Eric Seralini that said that rats fed with GM maize developed cancer tumours to reach its decisions Food and Chemical Toxicology journal retracted the paper in November 2013 following criticisms on the paper’s methodology by other scientists. The journal’s editor said that the results presented were “inconclusive”.

Emil Javier, president of the National Academy of Science and Technology, Philippines, tells SciDev.Net: “The retraction by a journal of a research study that was cited by the Philippine court for its decision to ban the GM eggplant field trials goes to show that the objection of Greenpeace, which quoted extensively the Seralini research, really has no basis.”

Mark Lynas, a British journalist and formerly against GMOs, now urges scientists to be more active in debates and explain the importance of their work as they are losing the public relations to anti-GMO groups.

On the GM eggplant, scientists “must explain that the GMO route is essential to reduce pesticide applications that are currently endangering the health of farmers and consumers alike” he says.
 
Link to the book

This article has been produced by SciDev.Net’s South-East Asia & Pacific desk.

Read Full Post »

Older Posts »

Follow

Get every new post delivered to your Inbox.

Join 206 other followers