Feeds:
Posts
Comments

Archive for the ‘Pheromones’ Category

“If you stop dealing with Tuta, if you’re not careful, it could easily come back again”

Start early, preferably even before the plants start growing. That’s the message from Eric Kerklaan of HortiPro to tomato growers using Isonet-T. In illuminated crops, this means that growers will already have the confusion pheromone in place, often in combination with pheromone traps with PheroTuta, and in non-illuminated crops, growers will have also already started with the pheromones. Or they will do so soon. “Most growers set up the traps with PheroTuta two weeks after planting. Isonet-T is already in place by then. Together, they form a good system against Tuta absoluta.”The crop protection specialist doesn’t expect Tuta absoluta, also known as the tomato leafminer moth, to come from outside at the beginning of week 4. “But you never know what could happen in the greenhouse,” he quickly adds. “Especially if you ended up with Tuta at the end of the previous season; then it could easily come back.”Eric has heard of growers who ended up with Tuta last year. “At the very end, the Isonet-T is sometimes not placed, which I think is a bad way to cut costs. If you had also had Isonet-T in place at the end, you wouldn’t have had Tuta at the end of your production period.”Isonet-T is recognizable by the brown-red polymer tube from which the confusion pheromone is released.DisasterGrowers will try to remove the Tuta absoluta from the end of the previous tomato crop during the crop rotation period, but experience says that it’s not easy. “The question is where the Tuta hides. Tuta can overwinter in pupae, which have a kind of antifreeze. When the temperature rises, the antifreeze evaporates. The pupa then emerges. That’s how the cycle begins. Two males are not so bad, but as soon as you have one male and one female…”Then, a disaster can suddenly occur, in the sense that the pest will spread rapidly throughout the spring. “By placing Isonet-T, you can prevent such a disaster.”CleanSome growers choose to spray before using biological control agents. Eric advocates doing it without spraying whenever possible and introducing the biological agents as quickly as possible, that is, Macrolophus in tomatoes, to combat Tuta. “Finish clean, start clean and on time; that’s my main message.”Now, after the crop rotation and with a clean greenhouse, Eric advises checking the greenhouse for seedlings from the old crop. “As soon as a new plant grows out of it, you will see that the Tuta immediately goes there. And you don’t want that. Look for old plants you might have missed and remove them immediately.”PheroTuta pheromone trapControlWhat growers want is not to have Tuta on old plants but for it to seek out the pheromone traps with PheroTuta from HortiPro. “Our PheroTuta pheromones attract both males and females.” Growers are advised to start with 20 traps per hectare when planting a new crop. They need to place the traps under the cultivation gutter. “Isonet T should have also been placed already. Together with PheroTuta, this forms a system. PheroTuta helps control the effectiveness of Isonet-T. As soon as you catch one female, you know that Isonet-T is no longer working effectively.”Another necessary measure is weighing the dispensers with Isonet-T. Weigh ten every week, advises Eric. “If the weight is the same two weeks in a row, you know that the dispenser is empty. There is always evaporation.”Dutch growers may use Isonet-T three times a year. That way, they can ensure year-round use. The advice is to use 100 dispensers per 1,000 m² of cultivation area. Growers should hang the dispensers 1.50 meters above the soil in a shady, not too warm, place.For more information:Eric Kerklaan and Lennart SimonseHortiProinfo@hortipro.comwww.hortipro.net

Publication date: 

Read Full Post »

Note the 100 Euro discount for active IAPPS members on registration fees for the International Plant Protection Congress., 1-5 July 2024, Athens, Greece. For more information on the IPPC and to become an IAPPS member ($30 for students, $35 for developing countries and $50 for industrial countries) go to the IAPPS website http://www.plantprotection.org and click on the Join IAPPS icon. If you have a problem joining please contact me at eheinrichs2@unl.edu

E A (Short) Heinrichs, IAPPS Secretary General and Membership Manager

Registration TypeUntil January 31st 2024From February 1st 2024
Undergraduate Students*290,00 €390,00 €
PHD students* Post Doc Scientists* and Retired scientists**475,00 €550,00 €
IAPPS Members590,00 €700,00 €
Non-Members690,00 €800,00 €

Read Full Post »

  Dear colleagues,   On behalf of the Hellenic Society of Phytiatry we would like to invite you to participate in the XX IPP Congress which is going to take place at the Megaron Conference center in Athens Greece, in July 1-5, 2024.The Congress is hosted by the Hellenic Society of Phytiatry in Athens, Greece and organized under the auspices of the International Association for the Plant Protection Sciences (IAPPS), and of the Agricultural University of Athens.   In an era of the undoubted phenomenon of climate change around the globe, in a period of the vast increase of earth population with immense problems in food security, in a period of enormous pressure on natural resources to meet α vast need for nutritious and safe food, conservation of biodiversity and creating opportunities for economic growth, Plant Protection will play an extremely important universal role in securing human welfare.   Management of Crop Loss caused by pathogens and pests is a complicated issue of paramount importance for global agriculture, involving hosts and environment, plus scopious and intense scientific research, political decisions and application of international rules and measures. There is an urgent need for developing ecofriendly and safe biologicals and agrochemicals, pesticides either with nano-formulations. Research is also required to study evolutionary dynamics in reference to climate change, measurements and analysis, modelling of crop loss and predictive modelling. So, there is an urgent need to identify new pests and efficiently cope with diseases or pests threatening global human welfare. Obviously, new pathogen resistant sources in germplasm for confronting destructive pests and diseases are an everyday request by farmers. In an era of the boom of artificial intelligence able in perceiving, synthesizing, and inferring information—demonstrated by machines, Plant Protection is on the center of international interest.   Therefore, the Congress will be consisted of plenary and concurrent sessions of updated information and research data with invited speakers along with oral and poster presentations to cover all plant protection disciplines including plant pathology, entomology, weed science, nematology, plant breeding, technology transfer and relative to plant protection disciplines. Satellite sessions will be also welcomed. Plenary lectures will be among others focused on:   Molecular diagnostics for evidence based rational use of pesticides, in the European Green Deal era Enabling sustainable agriculture through understanding and enhancement of microbiomes Applying chemical ecology for environmentally friendly strategies to control insect pests Impact and control of transboundary/invasive banana wilt pathogen, Fusarium oxysporum f. sp. cubense Microbial pesticides: Discovery, piloting and scaling up in Africa Sustainable weed management Coordinated approach for transboundary plant pest and disease management Food security in Africa needs policy support for sustainable plant health management   Concurrent Sessions will be generally focus on:
Current plant protection problems affecting major regional crops or crops of international significance such as grapevines, olives, citrus, tropical fruit trees, cereals, vegetables, forests etc. will be highlighted. Top scientists will be invited to present updated information on chemical plant protection problems contributing to current advances and alternatives offered by the private sector of agrochemical-pharmaceutical chemistry. Further objectives of the IPPCAthens2024, will be invited lectures and oral presentations on hot research topics and recent developments in Plant Protection sciences directly originating from research translation of molecular plant pest interactions. Scientific contact among young scientists and top research leaders, helping opening research cooperation and contacts with leading research groups around the globe will be promoted and facilitated.    
  International organizations dealing with food security, food safety and plant health will be welcomed to critically analyze crucial current problems related to world agriculture and propose measures and actions. FAO, EFSA, EPPO and other leading organizations will be invited to participate in this unique Global Plant Protection Congress.

We are confident that as congress organizers will make any effort needed to succeed in organizing a scientifically profitable event and assure you for a memorable stay in Athens Greece.
  More information regarding the Congress are available at www.ippcathens2024.gr   Sincerely yours, The Chairman of the XX IPPCATHENS2024
Eris Tjamos
  ​For any further information, do not hesitate to contact
Congress Secretariat
Panagiotis Georgakopoulos
Senior Project Manager
Tel: +30 2103250260 email: panagiotis@globalevents.gr   

Read Full Post »

Monday, 17 April 2023 19:43:43

Grahame Jackson posted a new submission

PestNet

Perfume component helps lure male moth pests

Phys.Org

by Mick Kulikowski, North Carolina State University
North Carolina State University researchers have shown that adding a small amount of a chemical used in perfumes—nonanal—to a two-chemical combination of other sex pheromones helped increase the cocktail’s effectiveness in mimicking female fall armyworm “come hither” calls to males.

The findings could eventually help farmers better detect, monitor and control fall armyworm populations, which negatively affect some 350 plant species—including crops like corn and cotton as well as turfgrass and other cultivated grasses.

“Nonanal is emitted by people, birds and even apples,” said Coby Schal, Blanton J. Whitmire Distinguished Professor of Entomology and co-corresponding author of a paper describing the research. “It is a universal attractant that, by itself, doesn’t have much of an effect. But when a certain percentage of nonanal is added to the multi-chemical attractant mixture discovered nearly 40 years ago, it has a highly stimulatory effect—in this case attracting male fall armyworm moths in the lab and then attracting male moths to traps in field experiments.”

Read Full Post »

Researchers just made it easier—and cheaper—to confuse crop pests

Plant that helps produce behavior-changing pheromones could boost environmentally friendly pest control

A diamondback moth on a leaf
The antennae of the diamondback moth are hypersensitive to airborne mating hormones, which makes them vulnerable to nontoxic pest control. HUANGLIN/ISTOCK

SHARE:

Each year, pests eat more than one-fifth of the crops grown around the world. Many farmers turn to insecticides to protect their harvest, but some opt for a gentler approach: They perfume their crops with behavior-influencing chemicals called pheromones that can confuse insects and prevent them from finding mates.

But the high price of pheromones—commercial products can cost $400 per hectare—has prevented the widespread adoption of the tactic. Now, a new, cheaper method of manufacturing artificial pheromones could allow more farmers to add this weapon to their arsenals.

“It could revolutionize how pheromones are produced for crop protection,” says Lukasz Stelinski, an entomologist at the University of Florida, Gainesville, who was not involved in the work. “I expect that it’s going to catch on and make pheromone disruption much cheaper and easier to apply in practice.”

Farmers worldwide use more than 400,000 tons of insecticide annually. These pesticides can harm farm workers and cause collateral damage to pollinators and other wildlife. Meanwhile, insects have already evolved resistance to many pesticides, forcing farmers to apply even more.

For some growers, pheromones provide an attractive alternative. Female insects naturally emit pheromones that attract males to mate. By flooding their fields and orchards with fake pheromones designed to appeal to specific insects, farmers can overwhelm these signals and prevent reproduction. Females then lay sterile eggs, which don’t hatch into hungry caterpillars.

The pheromone mating call is usually a mixture of compounds. Traps are designed to attract a particular species—to monitor for the presence of a pest, for example—so a precise cocktail is usually needed. But to sabotage mating, a broad-spectrum component can work because many related species use the same basic compounds as pheromone components.

Synthesizing this chemical smokescreen is nevertheless a complex, expensive proposition. It can cost anywhere from $1000 to $3500 to produce just 1 kilogram of artificial pheromones. Deploying it can cost between $40 and $400 per hectare, depending on the type of pest.

That’s why pheromones are typically only used to protect crops that require relatively little land to turn a decent profit, such as fruits and nuts. Farmers who grow crops that don’t sell for as much per hectare, such as corn or soybeans, often can’t afford to use pheromones to defend their vast fields. It also requires some experience to deploy pheromones effectively. “You’re talking about razor-thin profit lines for a family farm and then asking them to invest not only in the product, but in the labor it takes to get the product in the field,” says Monique Rivera, an entomologist at Cornell University. “It’s a tough ask.”

In a bid to lower costs, Christer Löfstedt, a chemical ecologist at Lund University, and his collaborators in several countries have for the past decade been modifying plants to produce the chemical building blocks needed for synthesizing pheromones. Their crop of choice is Camelina, a flowering plant related to canola with seeds rich in fatty acids—key ingredients in coaxing plants to produce these raw materials.

Löfstedt and colleagues relied on genetic engineering to outfit Camelina with a gene from the navel orangeworm which causes Camelina seeds to produce a fatty acid called (Z)-11-hexadecenoic acid. In insects, this fatty acid is a precursor to mating pheromones. The researchers began to grow their genetically modified Camelina in experimental plots in Nebraska and Sweden in 2016, selectively cultivating the plants that produced the highest amounts of this critical molecule.

After three generations, 20% of the fatty acid content of the seeds consisted of (Z)-11-hexadecenoic acid—enough to suggest the crop could be an efficient source of the raw materials needed to produce pheromones. Next, the researchers purified the oil and converted it into a liquid cocktail of pheromone molecules designed to appeal to the diamondback moth (Plutella xylostella), a pest that presents a particular problem in the Brassica, a group of plants including cabbage, kale, and broccoli.

In 2017, the team tested this pheromone blend in China. They put pheromone traps on sticks about 10 to 15 meters apart in a plot of the leafy Brassica choy sum. The traps worked just as well as commercial synthetic pheromones, the team reports today in Nature Sustainability. Another test in bean fields in Brazil revealed that a single plantmade pheromone could disrupt the mating patterns of the destructive cotton bollworm (Helicoverpa armigera) just as well as a synthetic pheromone.

ISCA Inc., a pest control company in Riverside, California, that participated in the research, estimates it would cost between $70 and $125 per kilogram to grow the Camelina and make the pheromones, less than half the cost of current synthesizing methods. That would put the costs on par with pesticides. The authors note that a liquified version of these pheromones could be dripped on fields, which would require less labor than manually placing traps.

A lower price might make the pheromones accessible to farmers in the developing world, says entomologist Muni Muniappan at the Virginia Polytechnic Institute and State University, who was not involved in the research. But because these pheromones work best when applied to large areas and most farmers in developing regions work small fields, farmers would likely need to work together to see the benefits, he says. “You need to have farmer education and outreach in order to make that successful.”

Getting regulatory approval to grow the genetically modified Camelina on commercial farms would take several years, the researchers note. But existing experimental permits already enable researchers to grow more than enough engineered Camelina to meet the current worldwide demand for pheromone control of diamondback moths and cotton bollworms, says Agenor Mafra-Neto, CEO of ISCA.

Several hurdles remain to applying the approach to other kinds of pests, such as beetles and leafhoppers. Doing so will likely require finding and adding other genes to Camelina. Still, says Junwei Zhu, a chemical ecologist with the U.S. Department of Agriculture, the new work “is a very good start.”


doi: 10.1126/science.ade6979

RELEVANT TAGS:

PLANTS & ANIMALS

ABOUT THE AUTHOR

Erik Stokstad

Erik Stokstad

mailTwitter

Author

Erik Stokstad is a reporter at Science, covering environmental issues. 

Read Full Post »

Bioengineered plants help produce moth pheromones for pest control

Pheromones are often used by farmers for controlling pest insects but the chemical process for producing them is expensive. A method for making them using bioengineered oil plants could be cheaper

ENVIRONMENT 1 September 2022

By James Dinneen

camelina oilseeds
The camelina oilseed plant can be used to make insect pheromones Kurt Miller

A bioengineered oilseed plant can produce a moth sex pheromone molecule used to control insect pests.

Pheromones are chemical signals that cause a behavioural response in members of the same or closely related species. For decades, farmers have used pheromones to keep pest insects away from high-value crops like apples and grapes, for instance by baiting traps with the chemicals or saturating fields with them to make it difficult for the insects to find mates. But the chemical process for making pheromones is too expensive to use for lower-value row crops like maize, soybeans and cotton.

Hong-Lei Wang at Lund University in Sweden and his colleagues bioengineered plants to produce a sex pheromone molecule secreted by two damaging pest species: female diamondback moths (Plutella xylostella) and cotton bollworms (Helicoverpa armigera).

The team used the bacterium Agrobacterium tumefaciens to introduce two genes into the oilseed plant Camelina sativa.

Read Full Post »

Using pheromones and mating disruption to fight Tuta absoluta

Tuta absoluta is a pest found in many greenhouses around the world. “Due to the climate change and the movement of goods, Tuta absoluta can now be found in many parts of the world,” says Irina Caraeva from Eco Center. “Generally speaking, if you see mining on the leaves  or the pests themselves – there might be a chance of an infestation.” And this can get quite nasty, not only because they inevitably weaken the plants but also because these get more susceptible to other pathogens.

The risk of using chemical products
Usually, a good practice to prevent that is to use insecticides, but they come with a downside. “The main issue has to do with the beneficial insects present in the greenhouse,” Irina points out. “Insecticides tend to affect those too, which is something growers definitely don’t want.” Another disadvantage of the use of insecticides to counter Tuta absoluta is the residue levels. “First of all, most of the insecticides are quite toxic, and residues can then be found on the produce. You can perhaps use them before the planting, but not during the entire growing season, it’s really not advisable. Additionally, Tuta absoluta develops resistance to most insecticides available on the market, even if there are products that can control the pest, they contain highly concentrated substances that cannot be used immediately before collection since the degradation period is too high.”

Pheromones
That is why Eco Center has devoted its efforts to developing solutions to control greenhouse pests in the most natural and environmentally friendly way. “Pheromones,” Irina points out. “These are species-specific, which means that they will affect only a given insect. In this way, a grower can be sure that beneficial insects don’t get harmed. At Eco Center, we have developed many pheromone products, with the most recent addition of the Tuta Protect – a mating disruption product.” The Eco Center also makes pheromone lures for monitoring tomato leaf miner to go together with their Delta Traps. “These are designed specifically to monitor the insect population in a cost-efficient and environmentally friendly way. They will help the growers to make decisions on further application of other pest management actions.”

Mating disruption
Irina continues to explain that before planting, a grower should start the monitoring process by installing a couple of Delta traps with pheromone lures. At the same time, if traps indicate the need for control of pests, Eco Center has come up with another solution. “Mating disruption,” she says. “These pheromone dispensers contain 170-180 milligrams of pheromone. Bluntly put, the mating disruption dispensers create “false pheromone trails” that affect Tuta absoluta males, which interferes with their mating finding behavior.”

Irina says that Eco Center is constantly working to include more insects in their pheromones catalog. “Right now, we are testing our products for the pink bollworm, which are mainly asked by our customers from the Middle East and Africa. At the same time, we are in the process of figuring out the best pheromone solution for the most common cannabis pests. Hopefully, we’ll get into that market soon,” she concludes.

For more information:
Eco Center
MD-2005, Moara Rosie 5E str.
Chisinau, Republic of Moldova
+373 68979696
info@ecocenter.md 
ecocenter.md

Publication date: Mon 29 Aug 2022
Author: Andrea Di Pastena
© HortiDaily.com

Read Full Post »

Fall armyworms were a miss this year

ossyugioh/Getty Imageshands moving and inspecting corn plants for leaf damaged by fall armyworms

FROM THE FIELD: Damage to corn leaves in the field is a sign of fall armyworm infestation. The problem is the pest is becoming resistant to its most popular control mechanism — pyrethroids.

Research on mating disruptors may help offset growing pyrethroid resistance.

Mindy Ward | Aug 24, 2022

fps-generic.jpg

Fall armyworm invasion. It is often a boom-or-bust cycle. This year was a bust, and that is good news for farmers. Still researchers know that will not always be the case, and they continue searching for ways to mitigate fall armyworm infestations, such as altering the pest’s behavior.

Last year was the biggest outbreak of fall armyworms across the U.S. in 30 years, said Kevin Rice, the former University of Missouri Extension entomologist who is now the director of the Alson H. Smith Jr. Agricultural Research and Extension Center at Virginia Tech.

“We expect that fall armyworm outbreaks may occur more often because of our milder winters,” he explained during the MU Pest Management Field Day in July.

Fall armyworms typically only overwinter in the tip of Florida and in Texas. However, researchers find that now, because of milder winters, they are overwintering in higher latitudes, but their natural enemies are not. “So they get a jump-start; they get a higher overwintering population,” Rice said.

He said farmers should beware of potentially more fall armyworm outbreaks on a more regular basis than every 30 years.

Problems with resistance

Fall armyworm is one of the fastest growing insects on earth, Rice warned. “They’re called armyworms because they move into field and devastate it like an army,” he said.

Staying ahead of them once they appear can be difficult because the larvae have a wide host range of at least 80 plants, but they prefer grasses such as corn, sorghum, bermudagrass and tall fescue. They can also feed on alfalfa, barley, oats, ryegrass, vegetables and soybeans. Armyworms tend to move quickly into new areas in large numbers.

The good news with fall armyworm is there are integrated pest management tools for control. The bad news is the pest is becoming resistant to one of those measures — pyrethroids.

kochievmv/Getty Imagesfall army worm on a corn leaf

CLOSE UP: Fall armyworms feeds on corn, leaving behind a moist sawdust-like frass near the whorl and upper leaves of the plant.

Rice noted that several states neighboring Missouri reported pyrethroid-resistant fall armyworm populations. Since females fly over thousands of miles, he added, farmers can assume those resistant genes are being passed and mixing throughout the population in surrounding states. Therefore, farmers should not be using pyrethroids for treatment of fall armyworm infestations moving forward.

While Rice is taking that tool out of the pest management toolbox, his research lab is hoping to add another control means back in.

Search for solutions

Universities such as Mizzou are working on a new management option for fall armyworms using mating disruption.

High-emission-rate “mega-dispensers” are used for sex pheromone mating disruption of moth pests. These dispensers suppress mating and reduce crop damage when deployed at very low to moderate densities. “It confuses them, and often they don’t lay eggs,” Rice noted.

The research focuses on whether these mega-dispensers work on a per-acre basis and at what levels. It is still in the “very preliminary stage,” he said, but trials were set up in Alabama and Missouri this summer. “We’re quantifying it, to see if the process works.”

Rice said these types of behavioral mechanisms might be good, viable options in the future as the industry loses chemistries to fight the fall armyworm.

Read Full Post »

‘Using insect biology against themselves’: New type of pesticide uses caterpillar pheromones to stop pests from mating

Gabe Barnard | St. Louis Post Dispatch | August 3, 2022

Print Friendly, PDF & Email
They drop out of the sky like paratroopers. Credit: Missouri Pest Monitoring Network
They drop out of the sky like paratroopers. Credit: Missouri Pest Monitoring Network

The caterpillars are the larvae of the fall armyworm moth, a planetary crop invader. The annual toll of their attacks is at least $300 million for farmers in the U.S., and billions of dollars around the globe.

But now scientists from the University of Missouri are on the edge of a new frontier in pest control: They are filling fields with a chemical — not a pesticide — that replicates the pheromones of the moth, overwhelms its senses and stops it from mating, essentially using the insect’s own biology against it. The system could reshape pest control in the U.S., and be even more useful in countries where subsistence farming is common and access to genetically modified crops isn’t.

Follow the latest news and policy debates on agricultural biotech and biomedicine? Subscribe to our newsletter.

SIGN UP

Female moths have glands that emit the pheromone, a compound specific to the species. They pump out the pheromone into the air at night, and male moths use pheromone receptors in their antennae to sense the chemicals and find the female. Then they mate. Females can produce up to 2,000 eggs in their five-day lifespan.

The researchers’ experiment is designed to thwart the moths’ romance: Plastic pheromone strips are attached with a binder clip to wooden stakes in the ground. The strips release clouds of pheromones so intense the males can’t pinpoint a mate.

This is an excerpt. Read the original post here

Read Full Post »

Using Integrated Pest Management to Reduce Pesticides and Increase Food Safety

twitter sharing button
facebook sharing button
email sharing button

Integrated Pest Management Innovation Lab

Mar 06, 2018

Photo: A farmer sprays pesticides on cucurbit crops in Bangladesh.
Photo: A farmer sprays pesticides on cucurbit crops in Bangladesh.

Written by Sara Hendery, Communications Coordinator of the Feed the Future Innovation Lab for Integrated Pest Management

In 2017, thousands of beetles and weevils moved into Ethiopia’s Amhara region. Like most living things, they were hungry, but their appetites desired a specific earthly delicacy: weeds.

Zygogramma, the leaf-feeding beetle, and Listronotus, the stem-boring weevil, were released in Ethiopia by Virginia State University, collaborators of the Feed the Future Innovation Lab for Integrated Pest Management, funded by USAID and housed at Virginia Tech. Zygogramma and Listronotus combat Parthenium, an invasive weed that threatens food security and biodiversity, causes respiratory issues and rashes on human skin, and taints meat and dairy products when consumed by animals. Biological control and other holistic agricultural methods are specialities of the Integrated Pest Management (IPM) Innovation Lab. Its team of scientists and collaborators generate IPM technologies to fight, reduce and manage crop-destroying pests in developing countries while reducing the use of pesticides.  

The application of pesticides is a major threat to human health. In sub-Saharan Africa, more than 50,000 tons of obsolete pesticides blanket the already at-risk land. Pesticides can taint food, water, soil and air, causing headaches, drowsiness, fertility issues and life-threatening illness. Especially vulnerable populations are children, pregnant women and farmers themselves; hundreds of thousands of known deaths occur each year due to pesticide poisoning. Pesticides often increase crop yields, but an abundance of crops is anachronistic when the cost is human life.

In a small community in Bangladesh, farmers used to rely on pesticides to manage insects and agricultural diseases destroying crops, but community members began to develop symptoms from the excessive pesticide use, and, more than that, children were doing the spraying. The IPM Innovation Lab implemented a grafting program in the community that generated eggplant grafted varieties resistant to bacterial wilt. Eggplant yields increased dramatically and purchases of chemical pesticides dropped, which meant safer and healthier produce for families.

This story is one of many. The IPM Innovation Lab taps into a collection of inventive technologies in both its current phase of projects in East Africa and Asia, and since its inception in 1993, to enhance the livelihoods and standards of living for smallholder farmers and people across the globe:

  • In Vietnam, dragon fruit is covered in biodegradable plastic bags to protect the plants from fungal disease.
  • In Niger, the release of parasitoids eliminates the pearl millet headminer.
  • The spread of coconut dust inside seedling trays grows healthy plants in India.
  • Parasitic wasps destroy the papaya mealybug from India to Florida.
  • Trichoderma, a naturally occurring fungus in soil, fights against fungal diseases in India, the Philippines and elsewhere.  
  • Cuelure bait traps save cucurbits from fruit flies in Bangladesh.
  • Eggplant fruit and shootborer baits protect eggplants from insect damage in Nepal, India and Bangladesh.

Pesticides do not necessarily eliminate pest invasion; they eliminate even the “good” insects on plants. Insects often develop resistance to popular chemicals when applied frequently, so not only is chemical spraying sometimes unnecessary, it is excessive.

Tuta absoluta, for example, is a tomato leafminer destroying tomato crops across the globe. In Spain, in the first year of the pest’s introduction, pesticides were applied 15 times per season, but the pest is resistant to pesticides and is so small (about the size of a stray pencil mark) that it often burrows inside the plant rather than around it. The IPM Innovation Lab and its collaborators generated one-of-a-kind modeling to track the movement of the species and introduced pheromone traps and neem-based bio-pesticides to help manage its spread, further ensuring the implementation of a series of technologies, rather than just relying on one, to reduce crop damage. The age-old saying “two heads are better than one” is accurate — just ask Zygogramma and Listronotus.

In developing countries, it is difficult to regulate the amount of chemical pesticides that make it onto crops, thus increasing the risk that chemicals will have a dramatic effect on the safety of food and the potential for exposure to foreign markets. One of the reasons pesticide over-application is common in developing countries is due to misinformation. In Cambodian rice production, pesticides are often misused because labels are printed in a foreign language; it is common that farmers mix two to five pesticides, resulting in pesticide poisoning. The IPM Innovation Lab’s project in Cambodia reduces the number of pesticides in rice production by introducing host-plant resistance and biological control.

Also, a fundamental practice of the IPM Innovation Lab is conducting trainings and symposia for farmers and IPM collaborators across the world to educate on the use and implementation of IPM technologies, further reducing the risk of possible harm to crops and human life. Additionally, IPM Innovation Lab partners with agriculture input suppliers and markets in project communities to ensure that bio-pesticides and IPM materials such as traps are readily available and that the purchase of pesticides are not the only option.

Ultimately, when you spray, you pay. The IPM Innovation Lab prioritizes both human and plant health by reducing the use of pesticides, and with the human population growing by the thousands every day, it is crucial that food is not only abundant but also safe and healthy to eat.

Read Full Post »

Effective Management Remains Elusive for Beetle That Eats Almost Anything

ENTOMOLOGY TODAY1 COMMENT

The Japanese beetle (Popillia japonica) is a widely known invasive species in North America. Adults feed on more than 300 plant species and can be downright difficult to manage. A new guide in the open-access Journal of Integrated Pest Management reviews their invasion history, ecology, and management. (Photo by Emily Althoff, originally published in Althoff and Rice 2022, Journal of Integrated Pest Management)

By David Coyle, Ph.D.

David Coyle, Ph.D.

Every spring, gardeners across this great land get excited as the seasons turn. All these new plants we put in last fall, or the new flower beds, or the growing garden—take your pick, really—are going to look awesome this year. (We’re all convinced of this.) I’m one of these people, an amateur flower gardener and tree aficionado. And every year, for the most part, things do look awesome, until about May, when the inevitable Japanese beetle emergence happens.

Popillia japonica, commonly known as the Japanese beetle, is native to Japan and first arrived in the U.S. in 1916. It is now established in 28 states and three Canadian provinces, has been detected in 13 additional states, and—let’s face it—it’s only a matter of time before it reaches the rest of the continent. Adults feed on foliage of more than 300 different species of plants, and the larvae are root feeders, preferring grasses. Japanese beetle larvae are a problem in turf, and adults are problematic on basically everything else. Trees? Check. Shrubs? Check. Flowers? Check. Garden plants? Check. Crops? Sometimes, yes, so check. Pretty much anything green is fair game as a food plant. Even geraniums, which are toxic to adults, don’t deter feeding. Adults that feed on geraniums become temporarily paralyzed, but once they regain bodily function they go right back to eating the same plant. These are truly fascinating and frustrating creatures.

Emily Althoff

Because of the Japanese beetle’s wide range and very in-your-face impacts, we have learned much about this system. But now, a paper published this month in the Journal of Integrated Pest Management reviews what we do and don’t know about P. japonica management. I spoke with the lead author, Emily Althoff, a Ph.D. student in entomology at the University of Minnesota, about challenges and opportunities associated with this well-known and universally loathed (I’m assuming) pest.

Coyle: What’s the best control option for the residential homeowner who has flowerbeds, shrubs, and flowering trees (asking for a friend)? What about someone who is very opposed to pesticides?

Althoff: One of the best home garden control options for those hesitant about insecticides is to hand pick the beetles off the plants in the mornings and place them in soapy water. While this is time consuming, it prevents the beetles from producing aggregation compounds and inducing attractive plant compounds as well, both of which would attract more beetles.

This is eye-opening to me, as I’ve never considered the impact of the aggregation pheromones. By removing adults in the morning, you can lessen their impact because they don’t call as many friends to the food party. Great advice.

A lot of people use different types of traps for Japanese beetles, and as an entomologist I’ve looked at a lot of these. So, tell me, why are there so many ridiculous ineffective traps on the market? Is the public that desperate to get rid of these things that literally any company can produce something that vaguely resembles a bug trap and people will buy it?

I think that the traps are a result of a few different things. I think it is very evident the pheromone and volatile cues are effective at attracting beetles. The issue is that they work too well in this regard, causing more beetles to arrive than the trap can hold. The commercially available traps are very effective at monitoring Japanese beetle activity. At the University of Missouri, these are used in the IPM pest monitoring network to quantify Japanese beetle emergence and populations throughout the state and report this information to growers every week.

However, the commercial traps are not designed to kill enough beetles to make a difference in damage rates in agricultural fields or gardens. We did count the number of Japanese beetles that bucket traps hold and found that approximately 3,500 beetles fill the trap. The traps are so effective at attracting Japanese beetles that they can fill up in as little as two days.

Japanese beetle larvae (Popillia japonica)
Japanese beetle leaf damage
Japanese beetle (Popillia japonica) traps are very effective in monitoring their presence but not in reducing their numbers. "The issue is that they work too well in this regard, causing more beetles to arrive than the trap can hold," says Emily Althoff, a Ph.D. student in entomology at the University of Minnesota. "However, the commercial traps are not designed to kill enough beetles to make a difference in damage rates in agricultural fields or gardens. We did count the number of Japanese beetles that bucket traps hold and found that approximately 3,500 beetles fill the trap. The traps are so effective at attracting Japanese beetles that they can fill up in as little as two days." (Photo by Raymond Cloyd, originally published in Althoff and Rice 2022, Journal of Integrated Pest Management)

Do you think Japanese beetles have crowded out any native species? Or did they fill a new niche?

While Japanese beetles are numerous and can defoliate entire trees and create severe economic damage to agriculture, in my opinion, their polyphagous nature prevents them from competing with native species for resources. Unfortunately, their damage to some commodities, like grapes, can actually create more feeding opportunities for other native beetles.

What’s the most Japanese beetles you’ve ever seen on one plant?

Too many to count!

Can confirm. I’ve seen this level of infestation too! Any other Japanese beetle tidbits of knowledge you’d like to share?

In the early days of the beetle’s arrival, many, shall we say, unique solutions were suggested for its management including the mobilization of Girl Scout and Boy Scout troops and paid bounties for beetles—a quart of beetles could get you 80 cents. Additionally, early management strategies such as aerial arsenic sprays were written about by Rachel Carson in her work Silent Spring.

Japanese beetles are here to stay, and to those of us doing battle with these voracious folivores, well, I wish I had better news. Management is either challenging or labor-intensive, depending on your perspective. On the other hand, if you’re using them in feeding assays, it’s really easy to collect ample amounts for your trials (make lemonade out of lemons, I always say). For those of you on social media, it’s pretty easy to track Japanese beetle emergence across their range because, the minute they’re out, extension folks are posting about them. Good luck, fellow gardeners!

Read More

Japanese Beetle (Coleoptera: Scarabaeidae) Invasion of North America: History, Ecology, and Management

Journal of Integrated Pest Management

David Coyle, Ph.D., is an assistant professor in the Department of Forestry and Environmental Conservation at Clemson University. Twitter/Instagram/TikTok: @drdavecoyle. Email: dcoyle@clemson.edu.

SHARE THIS:

New Guide Offers IPM Tips for Japanese Beetles in Soy and Corn

April 29, 2019

How Do We Know Which Invasive Plant Pests Will Be the Next Big Threats?

June 7, 2021

Biological Control for Hemlock Woolly Adelgid: Where Do We Stand?

October 7, 2019 Research NewsDave CoyleEmily Althoffintegrated pest managementinvasive insectsInvasive speciesJapanese beetleJournal of Integrated Pest ManagementPopillia japonicatraps

Read Full Post »

Older Posts »