Feeds:
Posts
Comments

Archive for the ‘Gene editing’ Category

Italy to launch first field test of a gene-edited crop, rice engineered to protect against disease without the use of agrochemicals

Rosanna Magnano | 24 Ore | April 8, 2024

Rice blast fungus or 'brusone'. Credit:  International Rice Research Institute via CC-BY-NC-SA-2.0
Rice blast fungus or ‘brusone’. Credit: International Rice Research Institute via CC-BY-NC-SA-2.0

The witch hunt against old GMOs will soon be a distant memory (perhaps). And after more than twenty years of blocks, a new generation of biotech (but not transgenic) plants will take its first steps in Italy. With the last and definitive green light from the Ministry of the Environment, experimental sowing of a variety of rice in the open field was obtained thanks to the new genomic techniques, known in Italy as TEA, assisted evolution techniques.

It is a rice capable of resisting, without the use of fungicides, the attacks of the Pyricularia oryzae fungus which causes the disease commonly known as “brusone” [in Italian, or rice blast fungus in English], the most serious fungal pathology of rice which in some years can lead to production losses even of the 50%. The request for authorization for the tests was presented by the University of Milan, where the first research group in the country coordinated by the biotechnologist Vittoria Brambilla, [thanks to updated] rules for field trials of plants developed with genome editing or cisgenesis.

Follow the latest news and policy debates on sustainable agriculture, biomedicine, and other ‘disruptive’ innovations. Subscribe to our newsletter.

SIGN UP

Laboratory tests using resistance tests have given excellent results in terms of productivity and without the administration of agrochemicals.

[Editor’s note: This article has been translated from Italian and edited for clarity.]

This is an excerpt. Read the original post here

combined disclaimer outlined@ x

Read Full Post »

India: National speed breeding crop facility inaugurated

Union Minister of Science & Technology, Dr. Jitendra Singh today inaugurated the first-of- its-kind “National Speed Breeding Crop Facility” at the premier National Agri-Food Biotechnology Institute (NABI) in Mohali.

Speaking on the occasion as chief guest, Dr. Jitendra Singh said, “this initiative is in line with Prime Minister Narendra Modi’s priority of doubling the farmer`s Income, ensuring their economic empowerment and promoting Agri-StartUps”. He said, farmers will now have the opportunity to improve their crop qualitatively as well as quantitatively.

Dr. Jitendra Singh said, “Biotechnology speedy seeds facility will cater to all the States of India, but it will especially be useful for the North Indian States like Punjab, Himachal Pradesh, Haryana and the UT of J&K. Adding further, he said, “this facility will augment transformational changes in crop improvement programs by accelerating the development of advanced crop varieties that could sustain climate change and contribute to the food and nutritional demand of the population with implementation of speed breeding cropping methods.”

The Minister said, “DBT institute of NABI has developed technology of ‘Climate- resistant crops’, by harnessing these technologies the farmers will not be restrained to cultivate a crop in a particular season rather they will have the liberty to practise farming irrespective of climate conduciveness”.

Dr. Jitendra Singh, while highlighting the recent achievements of institutes under the Ministry of Science & Technology, said, “Our institutes have specialized technologies in fruit, flowers, and crop cultivation through modern genetic means.” He recalled the success of ‘Tulip’ Cultivation by CSIR Palampur, and he also recalled the development of ‘108-petal lotus’ by CSIR Lucknow, which won an award in the TV series KBC. He further emphasized that applying the latest technology in the farming sector will add to the country’s economic growth by supplementing modern Science and Technology tools to the traditional vocation of farming in India.

“Bio-manufacturing and Bio-foundry will drive India’s future bio-economy and promote Green Growth,” said Dr. Jitendra Singh. According to him, the Ministry is working with a synergy and integrative approach, keeping in view the emphasis of PM Modi on combining Science and Technology with traditional knowledge to supplement India’s economy.

Dr. Jitendra Singh also highlighted the fact that under PM Modi, “India’s bio-economy has grown 13 folds in the last 10 years from $10 billion in 2014 to over $130 billion in 2024”.

Addressing the inauguration, Dr. Jitendra Singh said, “In the 3rd consecutive term of Prime Minister Narendra Modi, India has been projected to emerge as the 3rd largest economy of the world and rise to be the largest in coming years. Contribution of the agriculture sector will therefore be crucial for the Indian economy”.

Dr. Jitendra Singh informed that the Modi Government is conscious of the importance of Bio-economy, and thus, the recent ‘Vote of Account-Budget’ had a provision for a special scheme for Bio-manufacturing.

According to Dr. Jitendra Singh, institutes like NABI will have an important role to enable the transformational progress and value addition in farming sector productivity.

The facility will directly help a) Scientists and Researchers from government institutions, private institutions, and leading industries in India engaged in agricultural and biotechnology research and development of improved crop varieties and products, b) Plant Breeders working for crop development, and c) Progressive farmers who are contributing to adoption of new varieties with superior yield and nutritional traits.

In his address, Prof. Ashwani Pareek, Executive Director, NABI, said the speed breeding crop facility will be used to develop new varieties such as wheat, rice, soybean, pea, tomato, etc., by using a precisely controlled environment (light, humidity, temperature) to achieve more than four generations of a crop per year.

The NABI institute has significantly contributed to ‘Atal Jai Anusandhan Biotech (UNaTI) Mission (Poshan Abhiyan) and Biotech Kisan Hubs for Jammu & Kashmir, Ladakh, Himachal Pradesh, Punjab, Haryana etc, he said.Publication date: Tue 12 Mar 2024

Read Full Post »

FAO Releases 15 Case Studies on the Use of Biotechnologies to Meet the Needs of Smallholders

The Food and Agriculture Organization (FAO) has released a compilation of case studies showcasing the impactful use of agricultural biotechnologies to meet the needs of smallholders in developing countries, marking a significant step forward in the global efforts to achieve a sustainable agriculture and food systems.

Agricultural biotechnologies, ranging from low-tech tools like artificial insemination and tissue culture to high-tech methods such as whole genome sequencing, have emerged as a crucial part of the toolbox for transforming food systems. Recognizing their potential, FAO has been actively promoting knowledge sharing and innovation in agriculture through the application of biotechnologies.

The report covers 15 case studies that highlight successful applications of biotechnologies in diverse sectors, including crops, livestock, fisheries, forestry, and agro-industry, and a wide range of species, world regions and production systems, emphasizing that biotechnology extends beyond genetically modified organisms (GMOs) and is applicable to smallholders in developing countries. Collecting experiences worldwide, the case studies demonstrate how biotechnologies contribute to increased productivity, improved livelihoods, disease management, and the conservation of genetic resources essential for sustainable smallholder production systems.

One of the key messages emerging overall from the report, is the need for farmers to increase their yields while equally facing the current and future challenges of climate change. Which are the ingredients for success?

The report identifies four:

  • Partnerships
  • Long-term commitment
  • Government support
  • Good communication

FAO also anticipated that these case studies, presented in the context of a rapidly evolving field, will serve as a source of inspiration and guidance for those seeking to harness biotechnologies for the benefit of smallholder farmers.

Click here to read the publication.

Source: Euroseeds

RELATED ARTICLES


Regulatory and Political Challenges of New Breeding Techniques


FAO Joins the Digital Public Goods Alliance


FAO Director-General Opens the 8th World Congress on Conservation Agriculture

Canada

Read Full Post »

Monday, 11 September 2023 08:09:32

PestNet

Grahame Jackson posted a new submission ‘Microbe-induced gene silencing boosts crop protection against soil-borne fungal pathogens’

SubmissionMicrobe-induced gene silencing boosts crop protection against soil-borne fungal pathogensNature https://www.nature.com/articles/s41477-023-01507-9

Nature Plants (2023)

Abstract

Small RNA (sRNA)-mediated trans-kingdom RNA interference (RNAi) between host and pathogen has been demonstrated and utilized. However, interspecies RNAi in rhizospheric microorganisms remains elusive. In this study, we developed a microbe-induced gene silencing (MIGS) technology by using a rhizospheric beneficial fungus, Trichoderma harzianum, to exploit an RNAi engineering microbe and two soil-borne pathogenic fungi, Verticillium dahliae and Fusarium oxysporum, as RNAi recipients. We first detected the feasibility of MIGS in inducing GFP silencing in V. dahliae. Then by targeting a fungal essential gene, we further demonstrated the effectiveness of MIGS in inhibiting fungal growth and protecting dicotyledon cotton and monocotyledon rice plants against V. dahliae and F. oxysporum. We also showed steerable MIGS specificity based on a selected target sequence. Our data verify interspecies RNAi in rhizospheric fungi and the potential application of MIGS in crop protection. In addition, the in situ propagation of a rhizospheric beneficial microbe would be optimal in ensuring the stability and sustainability of sRNAs, avoiding the use of nanomaterials to carry chemically synthetic sRNAs. Our finding reveals that exploiting MIGS-based biofungicides would offer straightforward design and implementation, without the need of host genetic modification, in crop protection against phytopathogens.


Read Full Post »

Creating the crops of tomorrow: Canada turns to gene-edited seeds

Issued on: 31/08/2023 – 11:31

FOCUS
FOCUS © FRANCE 24

By:François RIHOUAY|Joanne PROFETA|Gloria HENRIQUEZ

What if we could eat broccoli that’s sweet? Or cherries without pits? How about apples that don’t go brown? With gene editing, nearly everything is possible. In May, Canada announced it would loosen regulations around new farming techniques. An authorisation is no longer required to create new types of genetically modified seeds. They also don’t need a label, unlike traditional GMOs. While some believe the changes will revolutionise agriculture, others are deeply worried. Organic farmers see the changes as the end of food traceability and a threat to organic certification. Our correspondents report.

Read more on related topics:

Read Full Post »

China approves safety of first gene-edited crop

BEIJING, May 4 (Reuters) – China has approved the safety of a gene-edited soybean, its first approval of the technology in a crop, as the country increasingly looks to science to boost food production.

The soybean, developed by privately owned Shandong Shunfeng Biotechnology Co., Ltd, has two modified genes, significantly raising the level of healthy fat oleic acid in the plant.

The safety certificate has been approved for five years from April 21, according to a document published last week by the Ministry of Agriculture and Rural Affairs.

Unlike genetic modification, which introduces foreign genes into a plant, gene editing alters existing genes.

The technology is considered to be less risky than GMOs and is more lightly regulated in some countries, including China, which published rules on gene-editing last year.

“The approval of the safety certificate is a shot in the arm for the Shunfeng team,” said the firm in a statement to Reuters on Thursday.

Shunfeng claims to be the first company in China seeking to commercialise gene-edited crops.

It is currently researching around 20 other gene-edited crops, including higher yield rice, wheat and corn, herbicide-resistant rice and soybeans and vitamin C-rich lettuce, said a company representative.

United States-based company Calyxt also developed a high oleic soybean, producing a healthy oil that was the first gene-edited food to be approved in the U.S. in 2019.

Several additional steps are needed before China’s farmers can plant the novel soybean, including approvals of seed varieties with the tweaked genes.

The approval comes as trade tensions, erratic weather and war in major grain exporter Ukraine have increased concerns in Beijing over feeding the country’s 1.4 billion people.

A growing middle class is also facing a surge in diet-related disease.

China is promoting GMO crops too, starting large-scale trials of GM corn this year.

Getting gene-edited crops onto the market is expected to be faster however, given fewer steps in the regulatory process.

Aside from the United States, Japan has also approved gene-edited foods, including healthier tomatoes and faster-growing fish.

(Reporting by Dominique Patton Editing by Christina Fincher)

https://s.yimg.com/rq/darla/4-11-1/html/r-sf.html

Read Full Post »

Canada will not regulate gene-edited crops as GMOs: ‘As the agriculture sector faces challenge of climate change, innovation is incomparable tool’

Agriculture and Agri-Food Canada | May 5, 2023

Print Friendly, PDF & Email
Credit: Maaark/Pixabay (CC0)
Credit: Maaark/Pixabay (CC0)

[May 3], the Minister of Agriculture and Agri-Food, the Honourable Marie-Claude Bibeau, announced updated guidance for seed regulations that will provide clear direction for plant breeders so that Canadian farmers can access new seed varieties, enhance sustainable food production and be more resilient in the face of today’s challenges. The Government of Canada is also strengthening transparency measures for products of plant breeding innovation and investing in the Canadian Organic Standards to protect the integrity of the organic sector.

Plant breeding innovations allow new plant varieties to be developed more effectively and efficiently than through conventional breeding. This can benefit farmers and consumers by providing them with access to plants and seeds that are both safe for humans, animals, and the environment. These varieties can also be more resistant to extreme temperature, precipitation, and insects, helping us adapt to climate change, feed a growing population and keep food costs down for consumers.

Through the Canadian Food Inspection Agency (CFIA)’s updated guidance for Part V of the Seeds Regulations, seed developers will be able to confidently invest in new products while maintaining the high standard of safety that Canada is known for domestically and internationally.

This update builds on a similar update last year to the Novel Food Regulations by Health Canada.

To help maintain the integrity of organic certifications, which allow the use of conventional seed but not gene edited seed, the government is announcing a series of measures to ensure transparency in how the seed is produced. Firstly, the creation of a Government-Industry Steering Committee on Plant Breeding Innovations Transparency to facilitate ongoing discussions as gene-edited products are introduced in the marketplace. Secondly, the expansion of the Seeds Canada Canadian Variety Transparency Database to provide transparency around individual seed varieties. Thirdly, federal oversight of the Canadian Variety Transparency Database to ensure the completeness and robustness of the database.

Follow the latest news and policy debates on sustainable agriculture, biomedicine, and other ‘disruptive’ innovations. Subscribe to our newsletter.

SIGN UP

These measures are informed by the recommendations and the work of the Industry-Government Technical Committee on Plant Breeding Innovation Transparency, which is comprised of members from the organic, conventional, and seed sectors, as well as officials from Agriculture and Agri-Food Canada (AAFC), the Canadian Food Inspection Agency (CFIA) and Health Canada. Their continued engagement will enable the Canadian Variety Transparency Database to succeed, ensuring the transparency of seed innovations in Canada.

In addition to these measures, Minister Bibeau announced that the Government will once again provide funding to support the review of Canada’s organic standards, which are updated every five years and due for renewal in 2025.

The United States, Japan, Australia, Argentina and Brazil have clarified the pathway for gene-edited products. New Zealand, the UK and the European Union (EU) are in the process of doing so.

The Government of Canada is committed to protecting the health and safety of Canadians and the environment through science and evidence-based decision-making, and recognizes that new plant breeding innovations, including gene-editing, allow new plant varieties to be developed more efficiently than conventional breeding.

Quote

“As the agriculture sector faces the challenge of feeding a growing world population in the midst of climate change, innovation is an incomparable tool to increase our production safely and sustainably. While facilitating the development of new plant varieties from plant breeding innovations, in light of discussions with the government-industry committee, we will protect the integrity of organic certification.”

– The Honourable Marie-Claude Bibeau, Minister of Agriculture and Agri-Food

“The Canadian Federation of Agriculture supports the release of CFIA’s new guidance on plant breeding innovation and ongoing commitment to transparency for producers. This will ultimately help Canadian farmers access new plant varieties that are more resilient to pests and extreme weather events and support our food security and sustainability objectives. The news that AAFC will help fund a review of the Canadian Organic Standards is also a welcome announcement. These two elements will help ensure farmers can continue to make informed decisions on what they produce.”

– Keith Currie, President of the Canadian Federation of Agriculture

Read the original post here

Print Friendly, PDF & Email

Read Full Post »

Alliance for Science

Disease-resistant GM cassava promises to be game-changer for Kenya

BY JOSEPH MAINA

AUGUST 15, 2022

SHARE

At the Kenya Agricultural and Livestock Research Organization (KALRO) center in Mtwapa, Kenya, scientist Paul Kuria uproots two sets of cassava tubers exposed to the devastating cassava brown streak disease (CBSD).

One of the plants is a conventional cassava variety that has no immunity to the disease. The second has been genetically modified (GM) to resist the disease. Kuria punctiliously slices each of the tubers open, and the difference between the two is stark — like night and day.

The conventional tuber looks emaciated and is punctured with brownish, unsavory spots dotting the entire circumference of its flesh. The GM tuber, on the other hand, is the picture of good health. Its skin is flawless and firm, and its flesh has an impeccable, white lustre.

CBSD is considered one of the world’s most dangerous plant diseases due to its significant impact on food and economic security. Cassava varieties that are resistant to the disease could considerably improve the crop’s ability to feed Africa while generating income for smallholder farmers.

In severe cases, the disease can lead to 100 percent yield loss. As noted by KALRO and its partners, cassava resistant to CBSD is in high demand by farmers where the crop is grown.

Meeting that demand has been an elusive target for plant breeders. But through modern biotechnology, a collaborative effort known as the VIRCA project has developed CBSD-resistant cassava line 4046. It has the potential to prevent 90 percent of crop damage, thus improving the yield and marketability of cassava roots.

“We used genetic engineering and produced an improved cassava,” Professor Douglas Miano, the lead scientist in the project, told journalists and farmers who toured the KALRO grounds in Mtwapa in early August.

“It’s the first GM cassava in the world, and Kenya is leading in this production,” Miano said.

The VIRCA (Virus Resistant Cassava for Africa) project was conceived in 2005 with the aim of solving the viral diseases that suppress cassava yields and reduce farmer incomes in East Africa. It brings together KALRO, the National Agricultural Research Organization (NARO) of Uganda and the Donald Danforth Plant Science Centre (DDPSC) in the United States.

“We have two main diseases affecting cassava production — CBSD and cassava mosaic disease,” Miano explained. “Cassava mosaic disease affects the leaves of the crop. The net effect is a reduction in the amount of cassava that is produced. CBSD, on the other hand, destroys the roots and affects the tuber.”

Scientists Paul Kuria displays GM disease-resistant cassava (left) vs cassava infected with CBSD. Photo: Joseph Maina

Dr. Catherine Taracha, a Kenyan who is on the project’s leadership team, said that plant viruses create a huge challenge for farmers.

“Cassava productivity is significantly hampered by viral diseases, and so we sought to develop a cassava line that would resist the viruses and thereby improve farmers’ livelihoods by boosting productivity and earnings from the crop,” Taracha said.

Because the line is yet to be approved for commercial release, the work is being carried out in regulated confined field trial conditions. If and when Kenya’s National Biosafety Authority approves line 4046 for the market, the new CBSD-resistant varieties would undergo normal government variety assessment and registration by regulators before being distributed to farmers.

The scientists further assure that CBSD-resistant cassava varieties are no different than their conventional equivalents — aside from their ability to resist CBSD.

“Due to the ability to resist CBSD, these varieties will be more productive with better quantity and quality of root yields,” Miano said.. “This will translate to greater demand and more profits for farmers.”

In addition, CBSD-resistant cassava line 4046 will produce disease-free planting material and thereby contribute to long-term sustainability of the cassava crop.

There will be no technology fee associated with line 4046, scientists say, implying that cassava stakes and cuttings will cost about the same as other highly valued cassava varieties.

Cuttings from CBSD-resistant cassava can be replanted in the same way farmers replant conventional cassava. They can also be grown with other crops because cultivation practices are the same as for conventional varieties.

The developers have further assured that CBSD-resistant cassava line is safe for the environment and biodiversity.

“We have developed the GM cassava up to the point where we have conducted all the safety studies and demonstrated that it is safe as food, feed and to the environment,” Miano said.

The general public and key stakeholders have been involved in the project, and it is anticipated that farmers and communities will be involved in selecting the best CBSD-resistant cassava varieties for their needs.

Cassava roots and leaves are the nutritionally valuable parts of the plant. The tuber is rich in gluten-free carbohydrates while the leaves provide vitamins A and C, minerals and protein. In addition to its nourishing properties, stakeholders have also identified cassava’s potential to spur Kenya’s industrial growth.

“Cassava is an important food crop, but we can also use it to industrialize in Kenya,” Miano asserted. “However, we have not yet been able to achieve this as a country.”

Miano identified starch as a potential cassava product that the country can leverage to advance its industrial growth. It is also projected that the improved cassava can protect farmers from devastating losses of this important food crop and contribute to the creation of thousands of jobs along the value chain due to the crop’s use as animal feed.

The scientists note that modern biotechnology is by far the best option to incorporate CBSD resistance in cassava cultivars carrying farmer-preferred characteristics. Similar approaches have been used to confer resistance to plant viruses and have been authorized by regulatory bodies around the world, including virus-resistant pawpaw, squash and beans.

Image: Scientist Paul Kuria displays cassava infected with cassava brown streak disease (left) and a GM variety that resists the devastating disease. Photo: Joseph Maina


Categories

Read Full Post »

omeCropsCotton Cotton gene-editing project aims to make plant more insect resistant

Cotton gene-editing project aims to make plant more insect resistant

Shelley E. Huguleybanner- swfp-shelley-huguley-eddie-eric-smith-jdcs770-20.jpg

Texas A&M AgriLife, USDA and Cotton Incorporated collaborate on the research project.

Farm Press Staff | Aug 24, 2022

SUGGESTED EVENT

fps-generic.jpg

Farm Progress Show

Aug 30, 2022 to Sep 01, 2022

Scieintists in the Texas A&M Department of Entomology have received a matching grant of almost $150,000 to conduct a three-year project to research novel pest management tools for cotton production. If successful, the project, Modifying Terpene Biosynthesis in Cotton to Enhance Insect Resistance Using a Transgene-free CRISPR/CAS9 Approach, could provide positive cost-benefit results that ripple through the economy and environment.

The project goal is to silence genes in cotton that produce monoterpenes, chemicals that produce an odor pest insects home in on, said Greg Sword, Texas A&M AgriLife Research scientist, Regents professor and Charles R. Parencia Endowed chair in the Department of Entomology. By removing odors that pests associate with a good place to feed and reproduce, scientists believe they can reduce infestations, which will in turn reduce pesticide use and improve profitability.

https://2233b2c8ae3755eb6b86d67811f920b1.safeframe.googlesyndication.com/safeframe/1-0-38/html/container.html

Research to improve a plant’s ability to tolerate or resist pest insects and diseases via breeding programs is nothing new, Sword said. But editing genomes in plants and pest insects is a relatively new and rapidly advancing methodology.

swfp-shelley-huguley-sam-stanley-cotton-drip-22.jpgA gene-editing project aims to expose and exploit simple but key ecological interactions between plants and insects that could help protect the plant. This is Sam Stanley’s 2022 drip-irrigated cotton near Levelland, Texas. (Photo by Shelley E. Huguley)

Sequencing genomes of interest and using the gene-editing tool CRISPR have become increasingly viable ways to identify and influence plant or animal characteristics. 

However, using gene-editing technology to remove a characteristic to make plants more resistant to pests is novel, Sword said. The research could be the genesis for a giant leap in new methodologies designed to protect plants from insects and other threats. 

Sword’s gene-editing project aims to expose and exploit simple but key ecological interactions between plants and insects that could help protect the plant.

“Insects are perpetually evolving resistance to whatever we throw at them,” Sword said. “So, it’s important that our tools continue to evolve.”

The matching grant is from both the U.S. Department of Agriculture National Institute of Food and Agriculture, NIFA, and the Cotton Board, a commodity group that represents thousands of growers across Texas and the U.S. The grant totals $294,000.

Critical seed funding 

Sword is collaborating with Anjel Helms, chemical ecologist and assistant professor in the Department of Entomology; Michael Thomson, AgriLife Research geneticist in the Department of Soil and Crop Sciences and the Crop Genome Editing Laboratory; and graduate student Mason Clark.

This research team is working on a project that was “seeded” by Cotton Incorporated, the industry’s not-for-profit company that supports research, marketing and promotion of cotton and cotton products.

The seed money allowed the AgriLife Research team to create a graduate position for Clark and produce preliminary data that laid the foundation for the NIFA grant proposal, Sword said. In addition, the terpene research is part of larger and parallel projects that began with direct support from Cotton Incorporated.    

“Cotton Incorporated’s support has been absolutely critical to jumpstart the project from the beginning,” he said. “From a scientific standpoint, industry support and collaboration are vital to project success, whether that’s leveraging money for research or identifying, focusing on and solving a problem, which actually helps producers.”

Industry collaborations strengthen the impact

Texas cotton production represents a $2.4 billion contribution to the state’s gross domestic product. From 2019 to 2021, Texas cotton producers averaged 6.2 million bales of cotton on 4.6 million harvested acres, generating $2.1 billion in production value. The Texas cotton industry supports more than 40,000 jobs statewide and $1.55 billion in annual labor income.

Research like Sword’s is augmented and sometimes directly funded by commodity groups representing producers and related industries.

swfp-shelley-huguley-eddie-eric-smith-jdcs770-32.jpg

Projects supported by the Cotton Board and Cotton Incorporated run the gamut of production, including reducing plant water demands, increasing pest and disease resistance, and improving seed and fiber quality. (Photo by Shelley E. Huguley)

Jeffrey W. Savell, vice chancellor and dean for Agriculture and Life Sciences, said collaborative projects help research dollars make the greatest impact for producers. Texas A&M AgriLife’s relationships with commodity groups that represent producers can jumpstart groundbreaking work and help established programs maintain forward momentum.

“Cotton Incorporated is one of our long-time partners, and that collaboration has made an enormous impact on individuals, farming operations, communities and the state,” Savell said. “This project is just one example of how we can do more by engaging with the producers we serve.”

The Cotton Board’s research investment

Bill Gillon, president and CEO of the Cotton Board, said projects supported by the Cotton Board and Cotton Incorporated have run the gamut of production, including reducing plant water demands, increasing pest and disease resistance, and improving seed and fiber quality.

Cotton Incorporated scientists typically identify a need or a vulnerability and create and prioritize topics for potential projects. These projects are developed in coordination with agricultural research programs that will either be directly funded by the group or could be submitted to funding agencies for competitive grants. The Cotton Board reviews project proposals and approves them for submission to NIFA for competitive grant dollars.

The Cotton Board’s Cotton Research and Promotion Program has generated more than $4 million in competitive cotton research grants from NIFA over the past three years, Gillon said. When coupled with $1.35 million from the Cotton Board, the program has generated $5.4 million in agricultural research funding for projects critical to improving productivity and sustainability for upland cotton growers in the U.S.

Gillon said funding-match grants represent a collaborative investment that maximizes financial support for science, ultimately impacting growers and local economies throughout Texas and the Cotton Belt.

swfp-shelley-huguley-21-cotton-harvest-sunset-vert.jpgPublic-private strategic support for research emphasizing sustainable practices across the agricultural spectrum has far-reaching benefits, says Phillip Kaufman, head of the Department of Entomology, Texas A&M University. (Photo by Shelley E. Huguley)

“We value our long-standing relationship with Texas A&M and other institutions across the Cotton Belt because the work would not be done without their expertise,” he said. “We certainly view this as a partnership and want to support their land-grant mission and help researchers maintain their capabilities, programs and labs that continue to produce results critical for cotton producers and agricultural production.” 

Industry buy-in 

Phillip Kaufman, head of the Department of Entomology, said an overarching goal for his department is addressing relevant topics or concerns, from public health to agricultural production. Whether research meets the immediate needs of producers or lays the foundation for breakthroughs in coming decades, many agricultural research projects’ relevance is guided by producer input.

Industry buy-in is critical to entomology research, he said. Topics relevant to commodities, in this case, cotton, and the public’s interest, in this case, NIFA, is a good representation of how the land-grant mission delivers for producers but can also ripple through communities, the economy and the environment.

Kaufman said public-private strategic support for research emphasizing sustainable practices across the agricultural spectrum has far-reaching benefits.

“This grant project is a good example of how cotton producers, the gins and other elements of their industry effectively tax themselves to fund campaigns and research that adds value to what they produce,” he said. “It also shows the motivation from a public dollar perspective to invest in research focused on providing pest control methods that reduce chemical use.”

TAGS: INSECTS

Read Full Post »

A New Green Revolution Is in the Offing

Thanks to some amazing recent crop biotech breakthroughs

RONALD BAILEY | 8.10.2022 5:00 PM

Share on FacebookShare on TwitterShare on RedditShare by emailPrint friendly versionCopy page URL

man stands in wheat field facing away from camera with outstretched arms

(Noam Armonn | Dreamstime.com)

A recent spate of crop biotech breakthroughs presage a New Green Revolution that will boost crop production, shrink agriculture’s environmental footprint, help us weather future climate change, and provide better nutrition for the world’s growing population.

The first Green Revolution was generated through the crop breeding successes pioneered by agronomist Norman Borlaug back in the 1960s. The high-yielding dwarf wheat varieties bred by Borlaug and his team more than doubled grain yields. The Green Revolution averted the global famines confidently predicted for the 1970s by population doomsters like Stanford entomologist Paul Ehrlich. Other crop breeders using Borlaug’s insights boosted yields for other staple grains. Since 1961, global cereal production has increased 400 percent while the world population grew by 260 percent. Borlaug was awarded the Nobel Peace Prize in 1970 for his accomplishments. Of course, the disruptions of the COVID-19 pandemic and Russia’s invasion of Ukraine are currently roiling grain and fertilizer supplies.

Borlaug needed 20 years of painstaking crossbreeding to develop his high-yield and disease-resistant wheat varieties. Today, crop breeders are taking advantage of the tools of modern biotechnology that can dramatically increase the rate at which yields increase and drought- and disease-resistance can be imbued in crops.

The Green Revolution’s crops required increased fertilizer applications to achieve their higher yields. However, fertilizers have some ecologically deleterious side effects. For example, the surface runoff of nitrogen and other fertilizers not absorbed by crops spurs the growth of harmful alga in rivers, lakes, and coastal areas. In addition, excess nitrogen fertilizer gets broken down by soil bacteria such that there are rising atmospheric concentrations of the greenhouse gas nitrous oxide, which, pound for pound, has 300 times the global warming potential of carbon dioxide.

The good news is that in the last month, two teams of modern plant breeders have made breakthroughs that will dramatically cut the amount of nitrogen fertilizers crops need for grain production. In July, Chinese researchers reported the development of “supercharged” rice and wheat crops, which they achieved by doubling the expression of a regulatory gene that increases nitrogen uptake by four- to fivefold and enhances photosynthesis. In field trials, the yields of the modified rice were 40 to 70 percent higher than those of the conventional varieties. One upshot is that farmers can grow more food on less land using fewer costly inputs.

Some crops like soybeans and alfalfa get most of the nitrogen fertilizer they need through their symbiotic relationship with nitrogen-fixing soil bacteria. Soybeans supply the bacteria living on their roots with sugars, and the bacteria in turn take nitrogen from the air and turn it into nitrate and ammonia fertilizers for the plants. However, nitrogen-fixing bacteria do not colonize the roots of cereal crops.

A team of researchers associated with the University of California Davis reported in July their success in gene editing rice varieties to make their roots hospitable to nitrogen-fixing bacteria. As a result, when grown under conditions of limited soil nitrogen, the yields of the gene-edited varieties were 20 to 35 percent higher than those of the conventional varieties. The researchers believe their gene-editing techniques can be applied to other cereal crops.

This new biotech-enabled Green Revolution promises a future in which more food from higher yields grown using less fertilizer means more farmland restored to nature, less water pollution, and reduced greenhouse gas emissions.

Sponsored Videos

Read Full Post »

Study: How GMOs and crop gene editing can increase genetic diversity and help contain climate change

Helen CurrySarah Garland | PLOS Biology | August 3, 2022

Print Friendly, PDF & Email
Credit: kwest via Shutterstock
Credit: kwest via Shutterstock

As climate change increasingly threatens agricultural production, expanding genetic diversity in crops is an important strategy for climate resilience in many agricultural contexts. In this Essay, we explore the potential of crop biotechnology to contribute to this diversification, especially in industrialized systems, by using historical perspectives to frame the current dialogue surrounding recent innovations in gene editing. We unearth comments about the possibility of enhancing crop diversity made by ambitious scientists in the early days of recombinant DNA and follow the implementation of this technology, which has not generated the diversification some anticipated.

We then turn to recent claims about the promise of gene editing tools with respect to this same goal. We encourage researchers and other stakeholders to engage in activities beyond the laboratory if they hope to see what is technologically possible translated into practice at this critical point in agricultural transformation.

A new hope: Gene editing for crop diversity

Leading plant scientists today praise innovative gene editing techniques as game-changing methods destined to fulfill aspirations for expanding crop genetic diversity through biotechnology. This fanfare sounds familiar, as scientists throughout the history of crop breeding have heralded various innovations in similar ways, most recently with the expectation that recombinant DNA would create paradigm-shifting possibilities. What, if anything, is different about the potential of gene editing technologies with respect to genetic diversity?

Gene editing …  offers opportunities to radically rethink the breeding process in ways that enhance genetic diversity by “restarting” crop domestication. Crop domestication relies upon a combination of spontaneously occurring genetic mutations and artificial selection by humans. In wild rice, for example, grains shatter in order to widely disperse the seed. During rice domestication, a mutation arose that caused non-shattering grains, a trait beneficial for early agricultural societies and therefore selected for cultivation. Rice wild relatives today carry beneficial traits like adaptation to diverse growth environments but their grains still shatter.

…Using biotechnology to expand crop genetic diversity will also require that researchers understand the many junctures in crop variety development and dissemination, especially those linked to seed commercialization, that work against such expansion. Addressing these obstacles will involve addressing issues as varied as farmer seed choice, seed certification processes, and international intellectual property regimes. It will require engaging with and developing further interdisciplinary and participatory research efforts to map infrastructural obstacles and to indicate actions that different stakeholders can take to facilitate genetic diversification.

This is an excerpt. Read the original post here

combined disclaimer improved outlined@ x

Read Full Post »

Older Posts »