Feeds:
Posts
Comments

Archive for the ‘CRISPR’ Category

India: National speed breeding crop facility inaugurated

Union Minister of Science & Technology, Dr. Jitendra Singh today inaugurated the first-of- its-kind “National Speed Breeding Crop Facility” at the premier National Agri-Food Biotechnology Institute (NABI) in Mohali.

Speaking on the occasion as chief guest, Dr. Jitendra Singh said, “this initiative is in line with Prime Minister Narendra Modi’s priority of doubling the farmer`s Income, ensuring their economic empowerment and promoting Agri-StartUps”. He said, farmers will now have the opportunity to improve their crop qualitatively as well as quantitatively.

Dr. Jitendra Singh said, “Biotechnology speedy seeds facility will cater to all the States of India, but it will especially be useful for the North Indian States like Punjab, Himachal Pradesh, Haryana and the UT of J&K. Adding further, he said, “this facility will augment transformational changes in crop improvement programs by accelerating the development of advanced crop varieties that could sustain climate change and contribute to the food and nutritional demand of the population with implementation of speed breeding cropping methods.”

The Minister said, “DBT institute of NABI has developed technology of ‘Climate- resistant crops’, by harnessing these technologies the farmers will not be restrained to cultivate a crop in a particular season rather they will have the liberty to practise farming irrespective of climate conduciveness”.

Dr. Jitendra Singh, while highlighting the recent achievements of institutes under the Ministry of Science & Technology, said, “Our institutes have specialized technologies in fruit, flowers, and crop cultivation through modern genetic means.” He recalled the success of ‘Tulip’ Cultivation by CSIR Palampur, and he also recalled the development of ‘108-petal lotus’ by CSIR Lucknow, which won an award in the TV series KBC. He further emphasized that applying the latest technology in the farming sector will add to the country’s economic growth by supplementing modern Science and Technology tools to the traditional vocation of farming in India.

“Bio-manufacturing and Bio-foundry will drive India’s future bio-economy and promote Green Growth,” said Dr. Jitendra Singh. According to him, the Ministry is working with a synergy and integrative approach, keeping in view the emphasis of PM Modi on combining Science and Technology with traditional knowledge to supplement India’s economy.

Dr. Jitendra Singh also highlighted the fact that under PM Modi, “India’s bio-economy has grown 13 folds in the last 10 years from $10 billion in 2014 to over $130 billion in 2024”.

Addressing the inauguration, Dr. Jitendra Singh said, “In the 3rd consecutive term of Prime Minister Narendra Modi, India has been projected to emerge as the 3rd largest economy of the world and rise to be the largest in coming years. Contribution of the agriculture sector will therefore be crucial for the Indian economy”.

Dr. Jitendra Singh informed that the Modi Government is conscious of the importance of Bio-economy, and thus, the recent ‘Vote of Account-Budget’ had a provision for a special scheme for Bio-manufacturing.

According to Dr. Jitendra Singh, institutes like NABI will have an important role to enable the transformational progress and value addition in farming sector productivity.

The facility will directly help a) Scientists and Researchers from government institutions, private institutions, and leading industries in India engaged in agricultural and biotechnology research and development of improved crop varieties and products, b) Plant Breeders working for crop development, and c) Progressive farmers who are contributing to adoption of new varieties with superior yield and nutritional traits.

In his address, Prof. Ashwani Pareek, Executive Director, NABI, said the speed breeding crop facility will be used to develop new varieties such as wheat, rice, soybean, pea, tomato, etc., by using a precisely controlled environment (light, humidity, temperature) to achieve more than four generations of a crop per year.

The NABI institute has significantly contributed to ‘Atal Jai Anusandhan Biotech (UNaTI) Mission (Poshan Abhiyan) and Biotech Kisan Hubs for Jammu & Kashmir, Ladakh, Himachal Pradesh, Punjab, Haryana etc, he said.Publication date: Tue 12 Mar 2024

Read Full Post »

FAO Releases 15 Case Studies on the Use of Biotechnologies to Meet the Needs of Smallholders

The Food and Agriculture Organization (FAO) has released a compilation of case studies showcasing the impactful use of agricultural biotechnologies to meet the needs of smallholders in developing countries, marking a significant step forward in the global efforts to achieve a sustainable agriculture and food systems.

Agricultural biotechnologies, ranging from low-tech tools like artificial insemination and tissue culture to high-tech methods such as whole genome sequencing, have emerged as a crucial part of the toolbox for transforming food systems. Recognizing their potential, FAO has been actively promoting knowledge sharing and innovation in agriculture through the application of biotechnologies.

The report covers 15 case studies that highlight successful applications of biotechnologies in diverse sectors, including crops, livestock, fisheries, forestry, and agro-industry, and a wide range of species, world regions and production systems, emphasizing that biotechnology extends beyond genetically modified organisms (GMOs) and is applicable to smallholders in developing countries. Collecting experiences worldwide, the case studies demonstrate how biotechnologies contribute to increased productivity, improved livelihoods, disease management, and the conservation of genetic resources essential for sustainable smallholder production systems.

One of the key messages emerging overall from the report, is the need for farmers to increase their yields while equally facing the current and future challenges of climate change. Which are the ingredients for success?

The report identifies four:

  • Partnerships
  • Long-term commitment
  • Government support
  • Good communication

FAO also anticipated that these case studies, presented in the context of a rapidly evolving field, will serve as a source of inspiration and guidance for those seeking to harness biotechnologies for the benefit of smallholder farmers.

Click here to read the publication.

Source: Euroseeds

RELATED ARTICLES


Regulatory and Political Challenges of New Breeding Techniques


FAO Joins the Digital Public Goods Alliance


FAO Director-General Opens the 8th World Congress on Conservation Agriculture

Canada

Read Full Post »

  Dear colleagues,   On behalf of the Hellenic Society of Phytiatry we would like to invite you to participate in the XX IPP Congress which is going to take place at the Megaron Conference center in Athens Greece, in July 1-5, 2024.The Congress is hosted by the Hellenic Society of Phytiatry in Athens, Greece and organized under the auspices of the International Association for the Plant Protection Sciences (IAPPS), and of the Agricultural University of Athens.   In an era of the undoubted phenomenon of climate change around the globe, in a period of the vast increase of earth population with immense problems in food security, in a period of enormous pressure on natural resources to meet α vast need for nutritious and safe food, conservation of biodiversity and creating opportunities for economic growth, Plant Protection will play an extremely important universal role in securing human welfare.   Management of Crop Loss caused by pathogens and pests is a complicated issue of paramount importance for global agriculture, involving hosts and environment, plus scopious and intense scientific research, political decisions and application of international rules and measures. There is an urgent need for developing ecofriendly and safe biologicals and agrochemicals, pesticides either with nano-formulations. Research is also required to study evolutionary dynamics in reference to climate change, measurements and analysis, modelling of crop loss and predictive modelling. So, there is an urgent need to identify new pests and efficiently cope with diseases or pests threatening global human welfare. Obviously, new pathogen resistant sources in germplasm for confronting destructive pests and diseases are an everyday request by farmers. In an era of the boom of artificial intelligence able in perceiving, synthesizing, and inferring information—demonstrated by machines, Plant Protection is on the center of international interest.   Therefore, the Congress will be consisted of plenary and concurrent sessions of updated information and research data with invited speakers along with oral and poster presentations to cover all plant protection disciplines including plant pathology, entomology, weed science, nematology, plant breeding, technology transfer and relative to plant protection disciplines. Satellite sessions will be also welcomed. Plenary lectures will be among others focused on:   Molecular diagnostics for evidence based rational use of pesticides, in the European Green Deal era Enabling sustainable agriculture through understanding and enhancement of microbiomes Applying chemical ecology for environmentally friendly strategies to control insect pests Impact and control of transboundary/invasive banana wilt pathogen, Fusarium oxysporum f. sp. cubense Microbial pesticides: Discovery, piloting and scaling up in Africa Sustainable weed management Coordinated approach for transboundary plant pest and disease management Food security in Africa needs policy support for sustainable plant health management   Concurrent Sessions will be generally focus on:
Current plant protection problems affecting major regional crops or crops of international significance such as grapevines, olives, citrus, tropical fruit trees, cereals, vegetables, forests etc. will be highlighted. Top scientists will be invited to present updated information on chemical plant protection problems contributing to current advances and alternatives offered by the private sector of agrochemical-pharmaceutical chemistry. Further objectives of the IPPCAthens2024, will be invited lectures and oral presentations on hot research topics and recent developments in Plant Protection sciences directly originating from research translation of molecular plant pest interactions. Scientific contact among young scientists and top research leaders, helping opening research cooperation and contacts with leading research groups around the globe will be promoted and facilitated.    
  International organizations dealing with food security, food safety and plant health will be welcomed to critically analyze crucial current problems related to world agriculture and propose measures and actions. FAO, EFSA, EPPO and other leading organizations will be invited to participate in this unique Global Plant Protection Congress.

We are confident that as congress organizers will make any effort needed to succeed in organizing a scientifically profitable event and assure you for a memorable stay in Athens Greece.
  More information regarding the Congress are available at www.ippcathens2024.gr   Sincerely yours, The Chairman of the XX IPPCATHENS2024
Eris Tjamos
  ​For any further information, do not hesitate to contact
Congress Secretariat
Panagiotis Georgakopoulos
Senior Project Manager
Tel: +30 2103250260 email: panagiotis@globalevents.gr   

Read Full Post »

Thursday, 06 July 2023 06:31:40

PestNet

Grahame Jackson posted a new submission ‘CRISPR’d Rice Resistant to Major Fungal Pest’

Submission

CRISPR’d Rice Resistant to Major Fungal Pest

Genetic Engineering & Biotechnology News

Genome editing’s role in crop improvement is in its infancy. Though CRISPR’d mustard greens and a tomato have made headlines, using CRISPR to help feed the world has not been broadly utilized.

Rice, which is amenable to genome editing, is a staple food for half of the world. However, rice blast, caused by the fungal pathogen Magnaporthe oryzae, results in large-scale annual losses. Now, CRISPR has been used to successfully engineer broad-spectrum disease resistance in rice plants (Oryza sativa). In addition, small-scale field trials in China showed that the newly created rice variety exhibited both high yields and resistance to the fungus.

This research is published in Nature in the paper, “Genome editing of a rice CDP-DAG synthase confers multipathogen resistance.

Read on: https://www.genengnews.com/topics/genome-editing/crisprd-rice-resistant-to-major-fungal-pest/

Read Full Post »

A ‘New Green Revolution’ is brewing — just in time, as the world population breaks past the 8 billion mark

Gurjeet Singh Mann | January 26, 2023

Print Friendly, PDF & Email
Credit: CGTN
Credit: CGTN

You can mark the date on your calendar: On November 15, 2022, a mother [gave] birth to a baby who [was] the world’s 8 billionth person.

This milestone in human history comes to us from an estimate by demographers at the United Nations.

They also predict that next year, my country of India will pass China as the planet’s most populous nation, with about 1.4 billion people.

Credit: United Nations

This means the expanding population will need much more food than we ever had before. If we’re going to feed them, we need another Green Revolution and a lot more for

India as well as for the rest of the world. Farmers must enjoy access to the full power of modern technology so that we can do our part to meet the necessities of life.

The challenges of population growth are enormous. I’ve seen the effects in my region of northern India, where I’ve worked on my family farm for more than four decades and currently grow rice and wheat. Areas that once were devoted to agriculture now are dotted with dwellings to accommodate more families and people. The boundaries of cities and villages continue to expand, cutting into cropland. Everything feels more congested.

We’re losing arable land every day to urbanization and industrialization. Because we can’t make more of it, we must do more with what we have—and in a world of 8 billion people, that means growing more food on less land than ever before.

This is our task for the rest of the century, too. The UN predicts continued growth in global population, with 9.7 billion people in 2050 and 10.4 billion in 2100.

Prediction intervals (shaded area around a projected trend) were derived from a probabilistic assessment of projection uncertainty. Credit: United Nations

The problem is especially severe in India. Soon we’ll have more people than China, but China always will have more arable land.

China is also spending enormous resources to improve food security and production. Credit: Yuan Chai et al

Feeding our nation will involve one of history’s biggest tests.

This is a serious problem, but it can be transformed into an opportunity as well. The good news is that we know what to do, at least in principle, and that’s because we’ve done it before.

Back in the 1960’s, the global population topped 3 billion—and many experts worried about the ability of farmers to improve their production and keep up. Enter Norman Borlaug, the agronomist who made it his mission to find a solution. In India, he worked with M.S. Swaminathan and M.S. Randhawa to develop new seed varieties, which gave a big boost to the yield and total production of cereals, especially wheat in India.

At a time when pessimists were ready to surrender in the war on hunger, Borlaug showed the power of human ingenuity to solve problems with science and technology. He went on to win the Nobel Peace Prize for his achievements as an agronomist.

Follow the latest news and policy debates on sustainable agriculture, biomedicine, and other ‘disruptive’ innovations. Subscribe to our newsletter.

SIGN UP

This is the hidden benefit of population growth: For all the ways that additional people can present dilemmas, they also give us a better chance to create a new generation of innovators who will help us think our way to answers.

As they do, farmers like me stand ready to do our part. We are ready to innovate, too.

During my career as a farmer, I’ve watched technology transform everything. The advent of GMOs, for example, allowed cotton farmers finally to withstand the assaults of boll worms and other pests—and we enjoyed a massive boom in production. Although I’m now growing other kinds of crops, I was a full participant in this development and saw firsthand how much it helped farmers and consumers alike.

Sadly, our government has prevented us from adopting GM technology in edible produce. While much of the developed world has embraced this technology, India has hesitated, due mainly to the opposition of political activists. We have an amazing potential to grow more food. A couple of the most promising examples are mustard and brinjal (which is known as “eggplant” in other parts of the world). Today, we have a ray of hope as GM mustard recently received environmental clearance from the Government. Access to these GM seeds would immediately help farmers strengthen India’s food security.

Yet this is about more than just a single technology. The gene-editing technology called “CRISPR” gives us new abilities to grow crops in harsher conditions, including drought, heat, and frost. We should apply it to every crop—starting with wheat and rice, which may be the commodities that could gain the most from new technological approaches and farmer access needed to meet the worlds hunger challenge.

Credit: Somisetty V. Satheesh et. al.

Everything begins with having the best seeds, but we have other technological opportunities: Climate-smart farming requires better machinery, from large harvesters for big fields to small and micro size so a maximum number of farmers can adopt it to small drones for mapping and surveillance; micro-irrigation, for the efficient delivery of water in a time of climate change; improved weather forecasting, to help us make planting decisions; and crop-protection tools that fight weeds, pests, and disease.

These are the makings of a new Green Revolution—one that a world of 8 billion people and counting will need.

Gurjeet Singh Mann is a farmer who embraces new technology including GM crops, and he helps guide his fellow and young farmers with farm technologies. Gurjeet runs Mann Farms  out of Sirsa, India. 

A version of this article was posted at Global Farmer Network and is used here with permission. Check out Global Farmer Network on Twitter @GlobalFarmerNet

Read Full Post »

Video: UNESCO examines the environmental and biodiversity impacts of gene-edited plants and animals

UNESCO | November 8, 2022

Print Friendly, PDF & Email
Credit: UNESCO
Credit: UNESCO

Genome editing is a powerful tool. It allows us to modify genes not only to treat human diseases but also to change characteristics of animals and plants within a very short period of time at a much larger scale than any other methods that humans had ever used in the past. A technique called “gene drive” that uses genome editing to spread certain genes in the entire population of a target species could eradicate diseases caused by insects such as malaria and other vector borne diseases. Plants and animals could be more resistant to diseases and grow quicker. But is it safe? What would be the impact on the environment and biodiversity?

The third of the series of Ethics of Genome Editing “3. Impact of Genome editing on plants, animals and environment” is now available in English, French, Japanese, Spanish and other languages subtitles.

Follow the latest news and policy debates on agricultural biotech and biomedicine? Subscribe to our newsletter.

SIGN UP

See the original post here

combined disclaimer outlined@ x

Print Friendly, PDF & Email

COMMENTS: CLICK HERE TO READ OR POST

Read Full Post »

CRISPR is on the cusp of revolutionizing food and farming. Here is a global regulatory primer

Kyle DiamantasOlga BezzubovaPatricia Campbell | JD Supra | August 26, 2022

Print Friendly, PDF & Email
Credit: Varsity
Credit: Varsity

The ability to edit eukaryotic DNA entails an almost limitless ability to alter the genetic makeup of the plants that become our food. Recently, scientific attention has been directed to applying a class of new gene-editing techniques that utilize CRISPR to food crops for the introduction of commercially desirable traits. Gene-edited crops can have a positive impact on food productivity, quality, and environmental sustainability, and CRISPR is unique in its relative simplicity, robust flexibility, cost-effectiveness, and wide scope of use.

Follow the latest news and policy debates on agricultural biotech and biomedicine? Subscribe to our newsletter.

In general, the EU subjects agricultural products edited with CRISPR technology to the full suite of genetically modified organism (“GMO”) premarket approval, safety, and labeling requirements.

In contrast to the EU approach, the United States does not currently regulate CRISPR-edited agricultural products as GMOs. The United States regulates biotechnology and genetic modification in food through a “Coordinated Framework” between the U.S. Department of Agriculture (“USDA”), Food and Drug Administration (“FDA”), and Environmental Protection Agency (“EPA”).

The regulation of CRISPR-edited agriculture is continuing to develop across the world, with notably different approaches and outcomes. While the European Union expressly considers CRISPR-edited agriculture to be “genetically modified” and subject to associated regulations, the United States generally does not currently consider CRISPR-edited agriculture to be “genetically modified.”

This is an excerpt. Read the original post here

Read Full Post »

omeCropsCotton Cotton gene-editing project aims to make plant more insect resistant

Cotton gene-editing project aims to make plant more insect resistant

Shelley E. Huguleybanner- swfp-shelley-huguley-eddie-eric-smith-jdcs770-20.jpg

Texas A&M AgriLife, USDA and Cotton Incorporated collaborate on the research project.

Farm Press Staff | Aug 24, 2022

SUGGESTED EVENT

fps-generic.jpg

Farm Progress Show

Aug 30, 2022 to Sep 01, 2022

Scieintists in the Texas A&M Department of Entomology have received a matching grant of almost $150,000 to conduct a three-year project to research novel pest management tools for cotton production. If successful, the project, Modifying Terpene Biosynthesis in Cotton to Enhance Insect Resistance Using a Transgene-free CRISPR/CAS9 Approach, could provide positive cost-benefit results that ripple through the economy and environment.

The project goal is to silence genes in cotton that produce monoterpenes, chemicals that produce an odor pest insects home in on, said Greg Sword, Texas A&M AgriLife Research scientist, Regents professor and Charles R. Parencia Endowed chair in the Department of Entomology. By removing odors that pests associate with a good place to feed and reproduce, scientists believe they can reduce infestations, which will in turn reduce pesticide use and improve profitability.

https://2233b2c8ae3755eb6b86d67811f920b1.safeframe.googlesyndication.com/safeframe/1-0-38/html/container.html

Research to improve a plant’s ability to tolerate or resist pest insects and diseases via breeding programs is nothing new, Sword said. But editing genomes in plants and pest insects is a relatively new and rapidly advancing methodology.

swfp-shelley-huguley-sam-stanley-cotton-drip-22.jpgA gene-editing project aims to expose and exploit simple but key ecological interactions between plants and insects that could help protect the plant. This is Sam Stanley’s 2022 drip-irrigated cotton near Levelland, Texas. (Photo by Shelley E. Huguley)

Sequencing genomes of interest and using the gene-editing tool CRISPR have become increasingly viable ways to identify and influence plant or animal characteristics. 

However, using gene-editing technology to remove a characteristic to make plants more resistant to pests is novel, Sword said. The research could be the genesis for a giant leap in new methodologies designed to protect plants from insects and other threats. 

Sword’s gene-editing project aims to expose and exploit simple but key ecological interactions between plants and insects that could help protect the plant.

“Insects are perpetually evolving resistance to whatever we throw at them,” Sword said. “So, it’s important that our tools continue to evolve.”

The matching grant is from both the U.S. Department of Agriculture National Institute of Food and Agriculture, NIFA, and the Cotton Board, a commodity group that represents thousands of growers across Texas and the U.S. The grant totals $294,000.

Critical seed funding 

Sword is collaborating with Anjel Helms, chemical ecologist and assistant professor in the Department of Entomology; Michael Thomson, AgriLife Research geneticist in the Department of Soil and Crop Sciences and the Crop Genome Editing Laboratory; and graduate student Mason Clark.

This research team is working on a project that was “seeded” by Cotton Incorporated, the industry’s not-for-profit company that supports research, marketing and promotion of cotton and cotton products.

The seed money allowed the AgriLife Research team to create a graduate position for Clark and produce preliminary data that laid the foundation for the NIFA grant proposal, Sword said. In addition, the terpene research is part of larger and parallel projects that began with direct support from Cotton Incorporated.    

“Cotton Incorporated’s support has been absolutely critical to jumpstart the project from the beginning,” he said. “From a scientific standpoint, industry support and collaboration are vital to project success, whether that’s leveraging money for research or identifying, focusing on and solving a problem, which actually helps producers.”

Industry collaborations strengthen the impact

Texas cotton production represents a $2.4 billion contribution to the state’s gross domestic product. From 2019 to 2021, Texas cotton producers averaged 6.2 million bales of cotton on 4.6 million harvested acres, generating $2.1 billion in production value. The Texas cotton industry supports more than 40,000 jobs statewide and $1.55 billion in annual labor income.

Research like Sword’s is augmented and sometimes directly funded by commodity groups representing producers and related industries.

swfp-shelley-huguley-eddie-eric-smith-jdcs770-32.jpg

Projects supported by the Cotton Board and Cotton Incorporated run the gamut of production, including reducing plant water demands, increasing pest and disease resistance, and improving seed and fiber quality. (Photo by Shelley E. Huguley)

Jeffrey W. Savell, vice chancellor and dean for Agriculture and Life Sciences, said collaborative projects help research dollars make the greatest impact for producers. Texas A&M AgriLife’s relationships with commodity groups that represent producers can jumpstart groundbreaking work and help established programs maintain forward momentum.

“Cotton Incorporated is one of our long-time partners, and that collaboration has made an enormous impact on individuals, farming operations, communities and the state,” Savell said. “This project is just one example of how we can do more by engaging with the producers we serve.”

The Cotton Board’s research investment

Bill Gillon, president and CEO of the Cotton Board, said projects supported by the Cotton Board and Cotton Incorporated have run the gamut of production, including reducing plant water demands, increasing pest and disease resistance, and improving seed and fiber quality.

Cotton Incorporated scientists typically identify a need or a vulnerability and create and prioritize topics for potential projects. These projects are developed in coordination with agricultural research programs that will either be directly funded by the group or could be submitted to funding agencies for competitive grants. The Cotton Board reviews project proposals and approves them for submission to NIFA for competitive grant dollars.

The Cotton Board’s Cotton Research and Promotion Program has generated more than $4 million in competitive cotton research grants from NIFA over the past three years, Gillon said. When coupled with $1.35 million from the Cotton Board, the program has generated $5.4 million in agricultural research funding for projects critical to improving productivity and sustainability for upland cotton growers in the U.S.

Gillon said funding-match grants represent a collaborative investment that maximizes financial support for science, ultimately impacting growers and local economies throughout Texas and the Cotton Belt.

swfp-shelley-huguley-21-cotton-harvest-sunset-vert.jpgPublic-private strategic support for research emphasizing sustainable practices across the agricultural spectrum has far-reaching benefits, says Phillip Kaufman, head of the Department of Entomology, Texas A&M University. (Photo by Shelley E. Huguley)

“We value our long-standing relationship with Texas A&M and other institutions across the Cotton Belt because the work would not be done without their expertise,” he said. “We certainly view this as a partnership and want to support their land-grant mission and help researchers maintain their capabilities, programs and labs that continue to produce results critical for cotton producers and agricultural production.” 

Industry buy-in 

Phillip Kaufman, head of the Department of Entomology, said an overarching goal for his department is addressing relevant topics or concerns, from public health to agricultural production. Whether research meets the immediate needs of producers or lays the foundation for breakthroughs in coming decades, many agricultural research projects’ relevance is guided by producer input.

Industry buy-in is critical to entomology research, he said. Topics relevant to commodities, in this case, cotton, and the public’s interest, in this case, NIFA, is a good representation of how the land-grant mission delivers for producers but can also ripple through communities, the economy and the environment.

Kaufman said public-private strategic support for research emphasizing sustainable practices across the agricultural spectrum has far-reaching benefits.

“This grant project is a good example of how cotton producers, the gins and other elements of their industry effectively tax themselves to fund campaigns and research that adds value to what they produce,” he said. “It also shows the motivation from a public dollar perspective to invest in research focused on providing pest control methods that reduce chemical use.”

TAGS: INSECTS

Read Full Post »

CRISPR gene-edited rice could help soil bacteria produce nitrogen fertilizer. Here’s how it works

Genetic Engineering & Biotechnology News | August 18, 2022

Print Friendly, PDF & Email
Nitrogen fertilizers are very expensive, this innovation could make plants use them more efficiently. Credit: RusticWise
Nitrogen fertilizers are very expensive, this innovation could make plants use them more efficiently. Credit: RusticWise

Researchers have used CRISPR to engineer rice that encourages soil bacteria to fix nitrogen, which is required for their growth. The findings may reduce the amount of nitrogen fertilizers needed to grow cereal crops, save farmers in the United States billions of dollars annually, and benefit the environment by reducing nitrogen pollution.

“Plants are incredible chemical factories,” said Eduardo Blumwald, PhD, a distinguished professor of plant sciences from the University of California, Davis, who led the research. His team used CRISPR to enhance apigenin breakdown in rice. They found that apigenin and other compounds induced nitrogen fixation in bacteria.

Follow the latest news and policy debates on agricultural biotech and biomedicine? Subscribe to our newsletter.

SIGN UP

Then they identified the pathways generating the chemicals and used CRISPR gene editing technology to increase the production of compounds that stimulated the formation of biofilms. Those biofilms contain bacteria that enhanced nitrogen conversion. As a result, nitrogen-fixing activity of the bacteria increased, as did the amount of ammonium available for the plants.

Much of the fertilizer that is applied is lost, leaching into soils and groundwater. Blumwald’s discovery could help the environment by reducing nitrogen pollution. “What this could do is provide a sustainable alternative agricultural practice that reduces the use of excessive nitrogen fertilizers,” he said.

This is an excerpt. Read the original post here

Read Full Post »

A New Green Revolution Is in the Offing

Thanks to some amazing recent crop biotech breakthroughs

RONALD BAILEY | 8.10.2022 5:00 PM

Share on FacebookShare on TwitterShare on RedditShare by emailPrint friendly versionCopy page URL

man stands in wheat field facing away from camera with outstretched arms

(Noam Armonn | Dreamstime.com)

A recent spate of crop biotech breakthroughs presage a New Green Revolution that will boost crop production, shrink agriculture’s environmental footprint, help us weather future climate change, and provide better nutrition for the world’s growing population.

The first Green Revolution was generated through the crop breeding successes pioneered by agronomist Norman Borlaug back in the 1960s. The high-yielding dwarf wheat varieties bred by Borlaug and his team more than doubled grain yields. The Green Revolution averted the global famines confidently predicted for the 1970s by population doomsters like Stanford entomologist Paul Ehrlich. Other crop breeders using Borlaug’s insights boosted yields for other staple grains. Since 1961, global cereal production has increased 400 percent while the world population grew by 260 percent. Borlaug was awarded the Nobel Peace Prize in 1970 for his accomplishments. Of course, the disruptions of the COVID-19 pandemic and Russia’s invasion of Ukraine are currently roiling grain and fertilizer supplies.

Borlaug needed 20 years of painstaking crossbreeding to develop his high-yield and disease-resistant wheat varieties. Today, crop breeders are taking advantage of the tools of modern biotechnology that can dramatically increase the rate at which yields increase and drought- and disease-resistance can be imbued in crops.

The Green Revolution’s crops required increased fertilizer applications to achieve their higher yields. However, fertilizers have some ecologically deleterious side effects. For example, the surface runoff of nitrogen and other fertilizers not absorbed by crops spurs the growth of harmful alga in rivers, lakes, and coastal areas. In addition, excess nitrogen fertilizer gets broken down by soil bacteria such that there are rising atmospheric concentrations of the greenhouse gas nitrous oxide, which, pound for pound, has 300 times the global warming potential of carbon dioxide.

The good news is that in the last month, two teams of modern plant breeders have made breakthroughs that will dramatically cut the amount of nitrogen fertilizers crops need for grain production. In July, Chinese researchers reported the development of “supercharged” rice and wheat crops, which they achieved by doubling the expression of a regulatory gene that increases nitrogen uptake by four- to fivefold and enhances photosynthesis. In field trials, the yields of the modified rice were 40 to 70 percent higher than those of the conventional varieties. One upshot is that farmers can grow more food on less land using fewer costly inputs.

Some crops like soybeans and alfalfa get most of the nitrogen fertilizer they need through their symbiotic relationship with nitrogen-fixing soil bacteria. Soybeans supply the bacteria living on their roots with sugars, and the bacteria in turn take nitrogen from the air and turn it into nitrate and ammonia fertilizers for the plants. However, nitrogen-fixing bacteria do not colonize the roots of cereal crops.

A team of researchers associated with the University of California Davis reported in July their success in gene editing rice varieties to make their roots hospitable to nitrogen-fixing bacteria. As a result, when grown under conditions of limited soil nitrogen, the yields of the gene-edited varieties were 20 to 35 percent higher than those of the conventional varieties. The researchers believe their gene-editing techniques can be applied to other cereal crops.

This new biotech-enabled Green Revolution promises a future in which more food from higher yields grown using less fertilizer means more farmland restored to nature, less water pollution, and reduced greenhouse gas emissions.

Sponsored Videos

Read Full Post »

Study: How GMOs and crop gene editing can increase genetic diversity and help contain climate change

Helen CurrySarah Garland | PLOS Biology | August 3, 2022

Print Friendly, PDF & Email
Credit: kwest via Shutterstock
Credit: kwest via Shutterstock

As climate change increasingly threatens agricultural production, expanding genetic diversity in crops is an important strategy for climate resilience in many agricultural contexts. In this Essay, we explore the potential of crop biotechnology to contribute to this diversification, especially in industrialized systems, by using historical perspectives to frame the current dialogue surrounding recent innovations in gene editing. We unearth comments about the possibility of enhancing crop diversity made by ambitious scientists in the early days of recombinant DNA and follow the implementation of this technology, which has not generated the diversification some anticipated.

We then turn to recent claims about the promise of gene editing tools with respect to this same goal. We encourage researchers and other stakeholders to engage in activities beyond the laboratory if they hope to see what is technologically possible translated into practice at this critical point in agricultural transformation.

A new hope: Gene editing for crop diversity

Leading plant scientists today praise innovative gene editing techniques as game-changing methods destined to fulfill aspirations for expanding crop genetic diversity through biotechnology. This fanfare sounds familiar, as scientists throughout the history of crop breeding have heralded various innovations in similar ways, most recently with the expectation that recombinant DNA would create paradigm-shifting possibilities. What, if anything, is different about the potential of gene editing technologies with respect to genetic diversity?

Gene editing …  offers opportunities to radically rethink the breeding process in ways that enhance genetic diversity by “restarting” crop domestication. Crop domestication relies upon a combination of spontaneously occurring genetic mutations and artificial selection by humans. In wild rice, for example, grains shatter in order to widely disperse the seed. During rice domestication, a mutation arose that caused non-shattering grains, a trait beneficial for early agricultural societies and therefore selected for cultivation. Rice wild relatives today carry beneficial traits like adaptation to diverse growth environments but their grains still shatter.

…Using biotechnology to expand crop genetic diversity will also require that researchers understand the many junctures in crop variety development and dissemination, especially those linked to seed commercialization, that work against such expansion. Addressing these obstacles will involve addressing issues as varied as farmer seed choice, seed certification processes, and international intellectual property regimes. It will require engaging with and developing further interdisciplinary and participatory research efforts to map infrastructural obstacles and to indicate actions that different stakeholders can take to facilitate genetic diversification.

This is an excerpt. Read the original post here

combined disclaimer improved outlined@ x

Read Full Post »

Older Posts »