Feeds:
Posts
Comments

Archive for the ‘Control tactics’ Category

SE farm press

Boll Weevil USDA Agricultural Research Service

The weevil: an historical look at the ‘war’ that changed Southern cotton

The boll weevil and its hunger for cotton was powerful enough to forge an unprecedented partnership between farmers, legislators and scientists.

Dominic Reisig | May 18, 2017

The boll weevil is not much to look at – just a grayish, little beetle with an impressively long snout. But this particular beetle, and its hunger for cotton, was powerful enough to forge an unprecedented partnership between farmers, legislators and scientists. And that partnership showed how much can be accomplished when scientists and farmers work together.

What adult boll weevils lack in size they make up for with their larvae’s ability to feed on and destroy cotton. Boll weevils entered the U.S. from Mexico in the late 1800s, when they were first spotted in Texas. By the 1920s they had spread through all of the major cotton-producing areas in the country. The scope of the damage was breathtaking, as were the control efforts thrown at this insect: at one time, one-third of the insecticide used in the U.S. was used to combat boll weevils.

Editor’s Note: This was originally posted on the North Carolina State University website.

In 1903, the chief of the U.S. Department of Agriculture (USDA)

testified before Congress that the insect’s outbreaks were a “wave of evil,” and that afflicted areas in Mexico had abandoned cotton production altogether. Indeed, many scholars agree that the impact was so great on the rural South’s cotton-dependent economy that it was one of the causes of the “Great Migration,” when African Americans moved en masse to the northern U.S. during the early 1900s.Despite the arrival of the boll weevil, cotton production at first actually increased in the U.S., because the price of cotton increased as the boll weevil ran some cotton growers out of business. Cotton production moved in advance of the weevil, creating a boom in cotton plantings in areas that were weevil-free. But as the cotton spread, so did the boll weevil – costing cotton growers billions in revenue.

Declaring War on the Weevil

Then, in 1958, something novel happened. The National Cotton Council of America unanimously agreed, for the first time ever, on a piece of farm legislation. Among other things, that legislation called for cotton research to be expanded – and the boll weevil to be eliminated.

This was an unusual step for many reasons. First, efforts had been made to eradicate insects in livestock before, but no one had ever tried it with a crop pest; this was breaking new ground. Second, this was going to cost a lot of money, which would require the support of the federal government. Third, nobody had yet come up with a way to eradicate the insect. Finally, once eradication began, the eradication process would become a common pool resource. Because of this, cooperation would be vital, given that there would be a temptation for individuals, or whole regions, to get a free ride, relying on the contributions of their neighbors to the eradication effort. So mandatory farmer participation was a must. One by one, each of the challenges were addressed, requiring close collaboration at every step.

Insect eradication was not an entirely new concept. The promoter of eradication was a USDA Agricultural Research Service (USDA-ARS) scientist named Edward Knipling, who had come up with an idea called the sterile insect technique. This technique was pioneered in the 1950s to eliminate screwworm, a parasitic insect pest of cattle. The sterile insect technique relies on flooding the environment with lots of sterile males. Those males then mate with females, but don’t produce any offspring. Knipling now envisioned eradication of the boll weevil, recognizing that it had two chinks in its armor. First, it was an exotic species, which meant that it could be present without some of the parasites and predators that weakened populations in its native Mexico. Second, it was reliant on a single host plant, cotton, which was also not native to the U.S.

Unfortunately, the sterile insect technique bombed. One million sterile boll weevil males were released in a trial. But the sterile males couldn’t compete with their virile wild counterparts and the trial was unsuccessful.

If eradication was going to take place, scientists would have to develop a new method. To that end, the federal government, state governments, and various cotton foundations and associations appropriated millions of dollars to support the research needed to develop the necessary tools for eradication.

For example, Congress funded USDA-ARS laboratories in many states, including one on the campus of Mississippi State University that was critical to creating many of the tools needed for eradication. This support continued through the eradication effort, ensuring that the insect could be eliminated beginning in Virginia and northeastern North Carolina, and moving steadily southward.

But the researchers of eradication faced a significant challenge up front. They knew that, for eradication to be successful, there had to be a very effective method of controlling boll weevils – one with a success rate of close to 100 percent. And that would require a significant leap over the available control techniques.

During the 1950s, controlling boll weevil infestations required multiple applications of very harsh and toxic insecticides (e.g., aldrin, azinphosmethyl, benzene hexachloride, chlordane, dieldrin, toxaphene, malathion, methyl parathion, and parathion). But a separate scientific advance was just around the corner.

New Weapons

In the 1960s, researchers were just beginning to understand the importance of insect pheromones, the chemicals produced by insect species that change behavior of other individuals in the species. USDA-ARS scientists discovered the sex attractant pheromones of the boll weevil – the combination of chemicals that allowed male boll weevils to find female boll weevils. These researchers were able to perfect a synthetic attractant pheromone blend, creating a lure that could be used to trap the amorous boll weevils. This advance would prove to be the linchpin for successful eradication, as weevils could be attracted, trapped, and monitored.

Another major breakthrough was the discovery of a method of control that increased success from 85-90 percent control to 98-99 percent.

Insect development is dependent on temperature, and lower temperatures slow down weevil development and reproduction. Mississippi scientists discovered that, by making multiple insecticide applications at short intervals during the autumn, they could both reduce the last reproductive generation of the weevils and significantly limit the survival of potentially overwintering adults. This was termed the reproduction-diapause control method.

The combination of the pheromone traps and the reproduction-diapause control method meant that, given cooperation on an area-wide basis, the boll weevil might be eradicated. And the pheromone traps cold also be used to confirm whether eradication efforts were successful. This one-two punch was tested in a pilot program in Alabama, Mississippi and Louisiana during the early 1970s. The pilot program couldn’t prove that this approach would eradicate boll weevils, but it was successful enough at reducing population levels that government, industry and research officials opted to proceed with a large-scale approach. This next step involved rolling out two companion trials in the late 1970s: one trial took place in Mississippi using the best known control methods for boll weevil at the time, while another trial tested the reproduction-diapause control method in North Carolina and Virginia.

Cooperation was critical to the North Carolina/Virginia trial. The federal government came through with enough funding to support 50 percent of the trial, while the state of North Carolina agreed to pick up another 25 percent of the cost. And more than three-quarters of North Carolina cotton growers approved of the eradication, agreeing to fund the remaining 25 percent. Meanwhile, a new insecticide had become available, diflubenzuron, which proved to make the eradication even more successful.

After three years, the reproduction-diapause method proved so successful that only one weevil was trapped in the North Carolina/Virginia eradication area. Moreover, this weevil was thought to be left over in a contaminated trap that hadn’t been cleaned properly. Insecticide use plummeted after eradication, but expansion and continuation of the program was not easy. Problems with funding, grower support in new eradication areas, and outbreaks of other pests, resulting from intensive insecticide applications used in eradication efforts – which obliterated beneficial insects that normally kept pests in check – slowed the process However, by 2009, the boll weevil was declared eradicated from all U.S. cotton-producing states, with one exception: Texas, which is the biggest cotton producer in the country.

A Fragile Victory

Which brings us to 2017. Eradication efforts have been stalled at the Texas-Mexico border, largely due to the instability created by illegal drug trafficking. That instability has effectively made large cotton farms in Mexico inaccessible for treatment, creating a welcoming habitat for boll weevil populations to rebound. Another problem in Mexico is the presence of non-cotton plant species that can host boll weevil. Further efforts to limit cooperation across the border, including the proposed border wall, ensure that the boll weevil’s “wave of evil” remains a looming threat. As a result, there is an ongoing battle to keep boll weevils in check in the Lower Rio Grande Valley of Texas, funded by an ongoing annual assessment from cotton-producing states, which is aimed at preventing – and tracking – the spread of boll weevil populations.

But this story also highlights the fact that that the boll weevil has been largely conquered in the U.S., thanks to cooperation among growers, scientists and government officials – and due, in large part, to federal research funding. For example, in the southeastern U.S., a boll weevil has not been captured in a pheromone trap in 14 years. And those federal investments, made across the South, continue to pay dividends in the form of new projects, which are poised to tackle today’s native and invasive insects due to the investments made from boll weevil eradication.

For example, those early investments by state and federal governments created the USDA-ARS research system that is still present today across the southern U.S., including the facility at Mississippi State. This system continues to make a difference for U.S. farms. Research units in areas that still have boll weevil populations are using cutting-edge technologies, such as population genetics and aerial infrared imaging, to track movement of the species and identify potential patches of host plants for destruction. As boll weevils have been slowly eradicated, state by state, these researchers and facilities have shifted research priorities to other issues and pests affecting crop production. No one wants to fight another hundred-year war with a plant pest.

Read Full Post »

How Kenya is soldiering on in war against armyworms – Daily Nation

The good, bad and ugly in fight against armyworms

Friday May 12 2017

Patrick Wanjala, a maize farmer in Namanjalala, Trans Nzoia County displays a maize plant attacked by armyworm in his farm.

Patrick Wanjala, a maize farmer in Namanjalala, Trans Nzoia County displays a maize plant attacked by armyworm in his farm. The pest has potential of causing famine since the larva not only feeds on staple food crops but also grass, pasture and any green vegetation. PHOTO | JARED NYATAYA | NATION MEDIA GROUP 

By STANLEY KIMUGE
More by this Author

From far, Malaki village, about some 6km from Kitale town in Kwanza in Trans Nzoia County, is lush green, with farms teeming with the maize crop. Nothing looks unusual at various fields but as one moves closer to the maize farms, a different story unravels.

The maize crop has been ravaged extensively by the fall armyworms, with the area being the worst affected by the pests.

Patrick Wanjala, a maize and beans farmer, bends for the umpteenth time looking at his crop. His face is forlorn showing the anguish and frustration that the pest has caused him.

“I have never seen anything like this before in my life as a farmer. I am not sure if I will harvest any maize this season.”

Under normal circumstances, he would have harvested between 60 and 70 90kg bags from his one-and-half-acres.

“It started with small holes on the plants’ leaves and I thought it was just the stem borer as that is the common pest here. I sprayed but nothing changed then reports of the armyworms having invaded the region filtered in,” recounts Wanjala.

In a bid to tame the notorious pest, Wanjala said he applied ash and even red soil as desperation set in.

“I tried that hoping that it would work but it was all in vain,” says Wanjala, whose crop was attacked some two months ago.

Then hope came when the government announced that it was coming up with measures to tackle the pest that is a threat to food security since it is destroying maize.

Armyworm has potential of causing famine since the larva not only feeds on staple food crops (maize, wheat, millets and sorghum) but also grass, pasture and any green vegetation mainly on the leaf lamina, leaving only the mid-rib

A team was set up at the county and national level to co-ordinate the fight against the worms.

But to date, Wanjala says he has not received any chemicals from either the county or national government as promised.

“I have been to the county offices several times hoping to get chemicals in vain. Two days ago I went there. More than 2,000 of us had turned up and the chemicals were not enough despite the little amounts they were giving,” says Wanjala, who is yet to spray any chemicals on his maize crop.

ONGOING RAINS

So far, according to the county government, some 15,000 acres of maize have been affected in the region, but the inspection of the fields is ongoing to ascertain exact figure.

The ravenous pest has fed on the “heart” of most of plants leading to stunted growth.

Trans Nzoia County, which is the country’s food basket has borne the brunt of the armyworm attack, with an estimated thousands acres of maize having been ravaged.

County’s chief agriculture officer Mary Nzomo says the county is distributing chemicals to farmers to contain the situation, though they are not enough.

“We have been able to spray about 10,000 acres out of the over 15,000 affected by the pest,” says Nzomo, noting an adult worm lays up to 2,000 eggs and it’s important to kill them before they become adults to avoid spreading. Besides spraying, she says the county has taken other measures to curb spread, which include sensitisation of farmers.

Maize crop attacked by the pest in a farm.

Maize crop attacked by the pest in a farm. Normally, the pests feed in the evenings and early morning. PHOTO | JARED NYATAYA | NATION MEDIA GROUP

“We are holding public barazas where we also distribute educational flyers and we do on-farm demonstrations. We are currently holding talks on FM radios as well as print and broadcast media to spread the message,” she says.

She notes despite promise by the national government that they will get chemicals since it recommended the spraying be done three times, no pesticides have been distributed to them and in the nearby Uasin Gishu County.

“Those farmers that have sprayed have noticed the chemicals are working. What we are telling farmers is that if you spot the pest in your area, you need to spray all maize plants including those that have not been attacked to avoid re-infestation,” says Nzomo.

Other factors are also hampering the struggle to eradicate the pest including the rains.

“Sunny and humid conditions help control multiplication of the pest but with the ongoing rains, it becomes a challenge to spray. Normally, the pests feed in the evenings and early morning and this is the time we are asking farmers to spray, but with the heavy rains, when they spray the chemicals are washed away.”

The farmers have been advised to spray at least three times in two weeks after germination, when the crops are knee-high and during the formation of the tarsals (about the flowering stage) to control the pest.

SALVAGE CROPS

Last month, Trans Nzoia set aside Sh45 million while Uasin Gishu Sh2 million to fight the pest.

“This was to cover about 20 per cent of farmers, mainly small-scale. On average, the cost of spraying is about Sh2,000 per acre but we are assisting to do one spraying for farmers,” says Nzomo.

Joseph Cheboi, Uasin Gishu County Director of Agriculture, says that four out of six sub counties have reported armyworm infestation, with Soy and Moiben that border Trans Nzoia County being worst hit.

Bernard Kimuiguei, a farmer in Kipsombe in Soy, says that his 20 out of 40 acres under maize has been affected.

“I was given some chemicals by the county officials but they were too little. I have to dig deeper into my pockets and it is really costly,” he says.

Dr Victoria Tarus, county chief officer in-charge of agriculture, says approximately 600 acres have been infested but they are distributing chemicals to farmers.

Robert Aluda, a farmer in Namanjalala Trans Nzoia, says besides the failure to get pesticides, lack of information on how to control the pest is also the biggest setback.

Trans Nzoia County Deputy Governor Stanley Tarus, Agriculture Chief Officer in the county Mary Nzomo and farmers during the launch of Fall Armyworm Management Campaign

Trans Nzoia County Deputy Governor Stanley Tarus, Agriculture Chief Officer in the county Mary Nzomo and farmers during the launch of Fall Armyworm Management Campaign in the county on May 09, 2017. Farmers whose maize crop had been infested were given pesticides to fight the invasion. PHOTO | JARED NYATAYA | NATION MEDIA GROUP

“If we knew from the beginning what the pest was and how to eradicate it, we would have salvaged our crops. We just heard on the radio that a pest had crossed the Kenya-Uganda border but we thought it won’t be that destructive so we did not act fast,” says Aluda, who took a bank loan of Sh50,000 and sank into the maize farm.

But it is not all gloom. Charles Sawe from Moiben says he bought himself chemicals recommended by agricultural extension officers and he has been able to clear the worms on his expansive farm.

He says that only few farmers have received the government chemicals.

UNDER CONTROL

The government recommended the following chemicals; Duduthrin, Twigapyrifos, Belt, Match, Ranger, Loyalty, Integra, Orthene, Jackpot, Imaxi. They are also using cocktails and are working well.

Other chemicals include Chlorpyrfos, Alpha Cypermerthrin , Indoxarb, Di Ubenzuron, Clorantraniliprole and Spinetoram.

At the Coast, where there was African armyworm attack, farmers have reported success in eradication of the pest. In Taita Taveta County, the armyworms invaded Njukini and Challa within the agriculturally rich Kasigau-Maktau belt and some parts of Mwatate.

Agriculture chief officer Evans Mbinga said the worms invaded 25 hectares under maize crop as well as some ranches. “At least 60 farmers were affected by the armyworms invasion, which followed rains after a prolonged drought. Following the rains, new grass sprang up and it created a conducive environment for the armyworms to multiply,” he explains.

The agriculture official says the county has brought the armyworm invasion under control after spraying pesticides on affected farms. “County field officers teamed up with farmers in spraying the pesticide known as Cypermetherin which wiped off the armyworms.”

Joseph Ivuso, a farmer in Taita, whose 2.5 acres of maize were invaded says he eradicated the pest with the help of county agricultural officers.

In Kwale County, the director of agriculture David Wanjala says the armyworms invaded 25 acres of maize in Lunga Lunga.

However, he noted that the pests did not cause a big damage. “When the farmers planted maize, the moths were at pupae stage in the soil, so when the rains started pounding the region they easily drowned.”

But despite the rains wiping away the pests, Wanjala says the county is expected to receive 1,000 litres of pesticide from the national government next week, which would be used in case the worms reappear.

Additional reporting by Mathias Ringa

Read Full Post »


//html5shiv.googlecode.com/svn/trunk/html5.js

2 PPOresistant pigweeds confirmed in Arkansas Tennessee MidSouth weed specialists have been warning that pigweeds ndash already often resistant to multiple chemistries ndash were in danger of developing resistance to PPO chemistry Those warnings have proven prophetic

The resistance treadmill – how do we get off?

Weed scientists say we can’t keep replacing one resistant herbicide with another.

Forrest Laws | May 12, 2017

How long will it take Palmer amaranth to become resistant to the new formulations of dicamba and 2,4-D that have been approved to be applied over the top of dicamba- and 2,4-D-tolerant cotton and soybeans?

That depends on what growers do to protect the new technologies, according to Bob Scott, a University of Arkansas Extension weed scientist and a speaker at the Pigposium 3 herbicide resistance meeting in Forrest City, Ark.

“If we follow on the resistance path that we’ve been following, and we just come in here and add dicamba to take care of this problem (PPO inhibitor resistance), what do you think is going to happen?” Dr. Scott asked. “We’re just going to add to our list of resistant weeds. We’re going to add dicamba to the growing list of resistance.”

Dr. Scott traced the history of the development of herbicide resistance in Palmer amaranth or pigweed in soybeans, beginning with Prowl and Treflan in the 1980s, the ALS herbicides such as Scepter in the 1990s, glyphosate in the 2000s and

the PPO inhibitor herbicides such as Reflex and Flexstar since 2010.Extension weed scientists at the University of Arkansas have already demonstrated how quickly resistance could develop to dicamba, the active ingredient in the new Xtendimax, Engenia and FeXapan herbicide formulations.

Three generations

“We proved this in a laboratory where this particular population of pigweed in just three selections using sub-lethal doses was not controlled with 16 ounces of dicamba,” Dr. Scott noted. “So we just proved that it can happen if we don’t do something to address herbicide resistance, and we’re not proactive in managing this from Day one.”

He had some words of warning about glufosinate or Liberty, which is one of the few remaining herbicides that can be applied postemergence to control pigweed – in Liberty Link cotton and soybeans.

“The last herbicide that’s put on the field is where the selection pressure occurs,” he said. “I had somebody ask me the other day about planting Liberty Link beans and putting Prefix or Zidua down and using Liberty post. But that last application they’ve been putting out has always been Liberty post, right?

“So they said ‘Is that a good enough reason to rotate to Xtend beans?’ and I said ‘absolutely.’ It’s a good reason to rotate chemistry. If it’s been working, change it. We have to rotate to change that last selection pressure that goes on that field.”

Farmers in northeast Arkansas have about a 50 percent chance of encountering resistance to PPO inhibitor herbicides in their fields in 2017, according to Jason Norsworthy, professor of weed science at the University of Arkansas and one of the organizers of the Pigposium.

Multiple resistance

But some growers are having to deal with Palmer amaranth populations that are not only resistant to PPO inhibitors but to three other groups of herbicides, as well, said Dr. Norsworthy, who holds the Elms Farming Chair of Weed Science at the U of A.

“In 2015, this field near Gregory in Woodruff County was found to contain resistance not only to the PPO inhibitor or Group 14 herbicides, but also to the ALS chemistries (Group 2), the dinitroanilines, things like Treflan and Prowl (Group 3), and Roundup (glyphosate – Group 9,” he said, referring to a field overgrown with pigweed.

“This was actually a conventional soybean field. Bob Scott did research in this field in 2015. And when you take a look at this population, we’re unable to grow Roundup Ready or conventional soybeans in this field because there is no effective postemergence option for the control of a pigweed population that has PPO resistance as well as glyphosate resistance.”

Weed scientists have now documented resistance in Palmer amaranth to the PPO inhibitor class of herbicides in seven states – Arkansas, Mississippi, Tennessee, Missouri, Illinois, Kentucky and Indiana. Norsworthy said 19 counties in Arkansas have confirmed PPO resistance.

“If you had any Palmer amaranth in one of your fields at harvest in 2016, you have better than a 50 percent chance that you have PPO-resistant Palmer in your fields,” said Dr. Norsworthy. “Folks, this is spreading, and it is spreading no different than what we saw with glyphosate. We are quickly losing one of the mainstays, especially in soybeans, from a weed control standpoint.”

Better than 50 percent

He displayed a slide of a bench top containing plants from about 40 different populations of Palmer amaranth. The plants were sprayed with 1.5 pints of Flexstar when they were about 1-inch tall.

“Anything you see that is still alive on this bench top (40 to 50 percent of the plants) would be resistant to the PPO chemistry,” he said. “Research has been conducted that shows the resistance mechanism is very similar to what you see in waterhemp in the Midwest. However, there are other PPO resistance mechanisms in this population that are much more resistant to the PPO chemistry than in some of the other pigweeds out there like waterhemp.”

Dr. Scott said that once resistance occurs that herbicide is lost to producers whether it’s glyphosate, Treflan or Flexstar.

“There’s no fitness penalty for the most part,” he said. “Some resistances have fitness penalties – the weed is damaged by the herbicide so it’s less competitive – but in pigweed it just seems to make it stronger the more resistant it gets.”

The threat of multiple resistance or resistance to more than one class of chemistry is frightening, Scott says. “I’ve had people calling me wanting to know where they can buy a good hoe, and that’s not my idea of weed science.”

Change it if it’s working

He said overlapping residual herbicides, rotating chemistries – even when the current herbicide is working – and using cultural practices will all be needed to preserve any new chemistries or traits growers may get in the years ahead. And growers need to treat the new traits – Xtend, Enlist and the new Balance trait that is expected to be approved in the near future – as if they were new herbicide chemistries.

Dr., Scott also called on herbicide manufacturers to help growers “do the right thing” economically when it comes to helping growers avoid overusing the currently available herbicide tools.

To read more about herbicide resistance-fighting efforts, click on http://www.deltafarmpress.com/cotton/odds-not-arkansas-growers-favor-ppo-herbicides-2017

Read Full Post »

IPM approach best for soybean aphids | Ohio Ag Net | Ohio’s Country Journal

About 89.5 million acres of soybeans will be planted across the United States in 2017 — a record high, according to the USDA. Research published in the April 2017 issue of Pest Management Science indicates that many of these soybean growers will invest in neonicotinoid insecticide seed treatments. The two-year, multi-state study revealed that, even during periods of infestation by the soybean aphid, the neonicotinoid treatment produced the same yields as using no insecticide at all.

The study was a joint effort of Purdue University, Iowa State University, Kansas State University, North Dakota State University, the University of Minnesota, South Dakota State University, and the University of Wisconsin. The research was grower-funded, using soybean checkoff funds provided by the North Central Soybean Research Program (NCSRP).

The neonicotinoid insecticide thiamethoxam, which is applied as a coating to soybean seeds, provides a maximum of two weeks of protection against insect feeding. Aphids typically don’t reach damaging numbers until much later in the season, said Christian Krupke, an entomology professor and extension specialist at Purdue University and one of the researchers and authors of the study. As a result, when soybean aphid populations reached threshold levels, from late July to August, the insecticide levels in tissues of neonicotinoid-treated soybean foliage were similar to plants grown from seeds without the insecticide.

Bruce Potter, Insect Pest Management (IPM) specialist for the University of Minnesota Extension, said one of the most important aspects of the study was providing soybean growers information about how to invest their funds.

Potter said soybean growers in northern regions, including Minnesota, don’t have chronic and consistent economic infestations of early season insect pests.

“Farmers wouldn’t get an advantage from putting insecticide on soybean seeds,” he said. The exception to this conclusion would be fields at a higher risk for infrequent pests like seed corn maggot and white grub or for seed production fields where bean leaf beetle and bean pod mottle virus occur. The research study concluded soybean farmers in all the regions in the study should employ the IPM approach, combining scouting and foliage-applied insecticide where necessary.

“In terms of long-term sustainability and the bottom line for your yearly balance sheet, the IPM approach is the most effective approach for pest management in the growing season,” Krupke said.

A study examining neonicotinoid seed treatments of corn had a similar result. This study, published in the journal PLOS ONE in March 2017, was conducted by Krupke’s doctoral student, Adam Alford. It revealed that concentrations of the insecticide most commonly applied to corn seeds, clothianidin, declined rapidly and approached zero in plant tissues within 20 days after planting. Less than 5% of what was applied to the seed was recovered from corn plants in the field.

Currently, at least one of two neonicotinoids, clothianidin or thiamethoxam, are routinely applied to more than 80% of the corn and over half of the soybeans grown in North America.

Previous studies, although smaller in size, had shown similar results with neonicotinoid seed treatments, which were introduced in the 1990s, said Kelley J. Tilmon, state extension specialist for the Ohio Agricultural Research and Development Center and an associate professor of entomology at Ohio State University. She performed the research in South Dakota when she was on the faculty of South Dakota State University.

The recent study was launched to provide more definitive scientific answers across a large geographic area, Tilmon said.

Janet J. Knodel, extension entomologist and associate professor at North Dakota State University, said the results were similar in North Dakota.

“As part of our research, we saw the soybean aphids coming into the field in late July and early August in North Dakota,” she said. “By then, the residual of the insecticide seed treatment is gone.”

Farmers can consult with their local university Extension services for additional information on specific pest management strategies in their state. They also can obtain information by downloading the Purdue Extension publication “The Effectiveness of Neonicotinoid Seed Treatments in Soybean” at http://bit.ly/2pZ8IBi.

Read Full Post »

 SE farm press
Pau Ulanch John Sorenson Ag Biotech
On hand for the Ag Biotech Entrepreneurial Showcase at the Cotton Room in Durham are Paul Ulanch, executive director, Biotechnology Crop Commercialization Center, North Carolina Biotechnology Center, and John Sorenson, chief executive officer of Vestaron in Kalamazoo, Mich.

Ex global agribiz leader says market ready for biological insecticides

Thirty years ago, most of the major agricultural chemical companies looked at venom from inspects and spiders and believed it would make great insecticides. But every venture failed.

John Hart | May 15, 2017

Thirty years ago, most of the major agricultural chemical companies looked at venom from insects and spiders and believed it would make great insecticides. But every venture failed.

Today, a company called Vestaron is successfully making Spear, a biological insecticide from spider venom that is expected to go to market later this year. At the Ag Biotech Entrepreneurial Showcase, held at the historic Cotton Room in Durham, N.C. May 10, John Sorenson, Vestaron’s chief executive officer, told the story of how his company did what others couldn’t do 30 years ago.

“The reasons they failed is that molecular biology tools were too crude and the production systems were not well developed,” Sorenson explained about earlier attempts to make insecticides from venom. “They didn’t know how to produce them, especially the small peptides that are very difficult to produce, and the regulatory path was not favorable. Biological insecticides had to go down the same regulatory path through EPA as synthetic chemicals.”

The market at the time was not ready for biological insecticides. “Consumers had not yet become aware or concerned about the food they eat and the pesticide residues contained on that food,” Sorenson said.In the past few years, the regulatory and marketing environment became more simplified for biological insecticides and Vestaron was able to take advantage of that.

At the forum for ag biotech entrepreneurs sponsored by the North Carolina Biotechnology Center, Sorenson offered some lessons learned on how Vestaron, based in Kalamazoo, Mich., was able to make and market Spear, the first biotech insecticide made from spider venom.

Sorenson was president of Syngenta’s global biotechnology business and president of its North American seed business. He was also head of Asgrow’s (now Monsanto’s) global vegetable seed business. He began his career as an assistant and associate professor of genetics at North Carolina State University.

Spear is a dual-mode of action line of bioinsecticides that offers pest control in ornamentals, vegetables and fruits in field and greenhouse settings. Commercial availability is expected later this year. It is non-toxic to mammals, birds, fish, honeybees and most benefecials.Sorenson said Vestaron surveyed 50 to 250 classes of peptides and selected the ones that had no human effects and then isolated the genes for those.

“Venoms from spiders, centipedes are simple and elegant,” Sorenson explained.  “They all have similar structure. If these guys don’t kill insects, they don’t eat, but a lot of them have negative human consequences as well.”

Spear is the first biological insecticide developed from this technology that offers full synthetic capabilities. The problem in the past was that biological insecticides tended to be only 80 percent effective while synthetic pesticides were 95 to 100 percent effect.

Sorenson emphasized that this effectiveness is critical for a product to be successful. He said this is an important lesson for ag biotech entrepreneurs to remember. “Good products have to solve real problems in the real world. If you don’t have that, you’re not going to have a product,” he said.

In the early days, Vestaron’s products showed only about 50 percent kill which is not good enough. Sorenson said the first goal was to get the effectiveness up to 80 percent, the same as other biologicals, and the second was to get performance up to synthetic chemical standards.

“The fact of the matter is if growers have to sacrifice 20 percent of their crop in order to use your product, they’re not going to use it. Fortunately, we were able to solve that problem as well,” Sorenson said.

Sorenson urged biotech startups to be aware of that status quo. “This is probably one of the biggest lessons that I learned,” he noted.

“The fact is nobody wants the startup to succeed except for the investors and the people that are involved in the startup. The rest of the world, the competition, doesn’t want you to succeed. And the competition has some big players that carry a lot of weight and make it very difficult for you to succeed.”

Moreover, Sorenson said customers are always leery of new products “The newer it is, the more radical it is, the more they are leery about it. The status quo is a mighty machine and it’s built to help you fail at every turn,” he said.

“If you can’t produce profitably, you don’t have a product. The boneyards of biotechnology are literally littered with startups that couldn’t produce their products profitably. That is reported as the leading cause of death among startups.”

Read Full Post »

 

Greater efforts are needed to promote biopesticides | EurekAlert! Science News
https://oss.maxcdn.com/libs/respond.js/1.3.0/respond.min.js

Public Release: 4-May-2017

Wiley

There are a number of environmental and economic reasons to promote the development and use of biological compounds as pesticides. A new analysis finds that there are fewer biopesticides registered in the European Union (EU) compared with the United States, India, Brazil, and China.

The relatively low level of biopesticide research in the EU relates to the greater complexity of EU-based biopesticide regulations compared with other countries. Differences between regions mean an uneven advancement of biopesticide technology and hence missed opportunities for improvement.

“All in all, the five regions considered include about half of the planet’s human population (comprising some 3.7 billion people and a total GDP of ~ $US 52 trillion), and so improving biopesticide regulation and research can, and undoubtedly will, enhance environmentally-friendly agriculture practice and performance on a global scale,” wrote the authors of the Pest Management Science study.

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

 

Read Full Post »

<!–
Iowa farmer

2017-05-06T20:00:00Z Non-herbicide tactics help manage weeds Iowa Farmer Today
May 06, 2017 8:00 pm

Editor’s note: The following was written by Lizabeth Stahl, Jared Goplen and Lisa Behnken, University of Minnesota Extension educators, for the university’s Minnesota Crop News website.


Weed management tools can be divided into three main categories: mechanical, cultural and chemical. Historically in conventional systems, chemical control options, or herbicides, have been relied on heavily.

Herbicide-resistant weed populations, however, are limiting herbicide options and effectiveness in many fields. Implementing non-chemical options, such as cultural and mechanical control tactics, can help make weed management systems more effective and durable.

To develop a more robust weed management program, consider the following three key strategies:

Account for weed emergence patterns

Weed emergence is driven by a number of factors, including temperature, light, nitrogen and/or chilling period, depending on the species.

University of Minnesota trials at Waseca in 2016 showed that delaying soybean planting until May 19 resulted in pre-plant tillage removing nearly 49 percent of the giant ragweed that emerged over the season. Soybean yield potential was still around 94 percent of optimal at the May 19 planting date, based on long-term research results, and the benefit was a much lower population of giant ragweed to control post emergence.

Soybean yield potential of the early planting date averaged 99 percent of optimal, however, pre-plant tillage removed less than 8 percent of the giant ragweed emerged over the season.

Pre-plant tillage can be an effective weed control tool, especially when planting is delayed. Flushes of early-emerging weeds, such as giant ragweed, common lambsquarters and winter annuals, can be taken out with pre-plant tillage, but be sure tillage is aggressive enough to destroy the weeds, and not just uproot and transplant them.

In contrast, waterhemp emerges later in the season, typically emerging over an eight to 10 week time period. This is why residual herbicides or the layering of residual herbicides (e.g. an application at planting and then 30 days later) is recommended for control of waterhemp.

Manage the weed seedbank

Seed production of weeds can vary significantly by species. Giant ragweed, for example, has been found to produce from 1,800 to 10,000 seeds per plant, while waterhemp can average over 350,000. Although competition with other plants can reduce seed production, dense weed populations have the potential to produce tremendous amounts of weed seed.

Common lambsquarter is a long-term survivor in the weed seedbank, and according to the University of Michigan, it takes an estimated 78 years to see a 99 percent depletion of the seedbank.

In contrast, University of Minnesota research demonstrated the giant ragweed seedbank could be depleted 97 percent in two years. University of Illinois research found the waterhemp seedbank could be depleted by more than 99 percent in 4 years.

Burial of seed by tillage can increase longevity in the seedbank, while seed left on the soil surface can be lost to predation and decay. For this reason, delaying tillage as long as possible in areas where weeds went to seed could help reduce long-term weed management challenges. Avoid deep tillage, which enhances seed longevity.

Not running the combine through a weed patch will help limit the spreading of weed seeds throughout the field. Also, manage weeds along field edges to help prevent buildup of the weed seedbank.

Incorporate sound agronomic tactics

Ensuring the crop is as competitive as possible (e.g. adequate fertility, planting population and disease and pest control) can help enhance weed control. Narrow rows, expanding crop rotations and cover crops have the potential to aid in weed control as well.

Cultivation is another effective tool, allowing you to remove weeds without setting back the canopy as some postemergence herbicides can, leading to faster canopy closure and a more competitive environment for weeds.

Cultivation was evaluated in Minnesota research trials in 2015 and 2016. A preemergence application of Boundary was followed by either Liberty or mechanical cultivation. In 2016, final waterhemp control was significantly better with the Boundary/Cultivation treatment (98 percent) compared to the Boundary/Liberty program at 89 percent.

Copyright 2017 Iowa Farmer Today. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

Read Full Post »

Older Posts »